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Ecological niche models (ENMs) have been growing in 
popularity over the last decade, largely because they utilize 
two types of easily accessible data: 1) georeferenced local-
ity data, often culled from museum collections (e.g. Global 
Biodiversity Information Facility), and 2) environmental GIS 
layers, which are being developed to describe the environ-
ment at any point on the earth’s surface at increasingly finer 
resolution (New et al. 1999, 2002, Hijmans et al. 2005). 
ENMs are used for three main purposes (Halvorsen 2012): 
1) ecological response modeling (ERM), which describes 
the relationship between species modeled suitability and 
specific environmental variables, 2) projective distribution 
modeling (PDM), which predicts the distribution of a spe-
cies in either a time or geographic area different from where 
the data were originally collected, and 3) spatial prediction 
modeling (SPM), which predicts the probability of finding 
a species at a particular location as accurately as possible.  
Of these applications, the last is the least controversial, 
because it involves the fewest modeling assumptions and is 
also the most easily tested.

To test an ERM prediction requires physiological  
studies in which one tests the performance of the target 

species while continually varying one of the environmental 
variables in question and keeping all other environmental 
variables constant. PDM predictions can be verified by either 
experimentally introducing the target species to localities in 
the new geographic area and monitoring performance, or 
waiting for a future time frame and observing whether the 
target species is capable of persisting in the projected range. 
Testing an SPM prediction is comparatively easy; one only 
has to visit a set of previously unsampled localities and deter-
mine whether or not the target species is present. By repeat-
ing this procedure across multiple localities, one can make  
a statistical statement about the fit of a model to the true spe-
cies distribution and compare alternative models. Although 
this kind of model validation is relatively straightforward, 
there are few published examples of ground truthing SPMs. 
Rather, SPMs are usually tested with locality data drawn 
from the same survey that provided the data on which the 
model was originally trained. Even if these two sets of data 
consist of entirely unique localities, they will still be spa-
tially correlated, because the same surveyor(s) collected both 
data sets, and thus both sets of localities are constrained to 
come from the general areas the surveyor(s) visited (Veloz 
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Many studies employ ecological niche models (ENMs) to predict species’ occurrences in undersampled regions, gener-
ally without field confirmation. Here, we use field surveys to test the relative utility of four potential refinements to the 
standard ENM approach: 1) altering model complexity based on AICc, 2) selecting background points from a biologically 
informed region, 3) using target-group background to account for sampling bias in existing localities, and 4) using many 
rangewide localities (global model) versus fewer proximal localities (local model) to construct geographically restricted 
range predictions. We used Maxent to predict new localities for the California tiger salamander Ambystoma californiense, 
an endangered species that often goes undocumented due to its cryptic lifestyle. We followed this with a field survey of 
260 previously unsampled potential breeding sites in Solano County, CA and used the resulting presence/absence data to 
compare all factorial combinations of the four model refinements using a new application of the Kruskal–Wallis test for 
ENM outputs. Our field surveys led to the discovery of 81 previously undocumented breeding localities for the California 
tiger salamander and demonstrated that ENMs could be significantly improved by utilizing target-group background  
to account for spatial sampling bias and local models to focus model output on the subregion of the range being sur-
veyed. Our results clearly demonstrate the potential for local models to outperform global models, and we recommend 
supplementing traditional Maxent global models that utilize all known localities with local models, particularly when spe-
cies occupy geographically structured, heterogeneous habitat types. We also recommend using target-group background 
since the improvement we observed when including it in our models was significant and very similar to that documented  
by previous studies. Most importantly, we emphasize the importance of field verification to enable rigorous statistical 
comparisons among models.
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2009). This is a recognized problem, and attempts have been 
made to divide locality data in a more informed manner and 
avoid spatial correlation (Phillips 2008). These divisions are  
usually geographical and therefore run the risk that spatially 
distinct subsets of the target species are locally adapted and 
thus have different underlying ENMs. An alternative that we 
use in this study is to train the model(s) with known locality 
data and test them with new, independent field surveys.

Maxent (Phillips et al. 2006) has been an increasingly 
popular ENM algorithm since it was placed in the top tier 
of ENM algorithms by the most comprehensive compari-
son of ENM methods to date (Elith et al. 2006). When 
developing a Maxent model, there are many choices that the 
modeler must make, including: 1) the geographic area from 
which to sample background points, 2) whether the back-
ground points should be chosen at random or to account 
for sampling bias, and 3) whether to adjust the regulariza-
tion parameter to select the appropriate model complexity. 
There is clear evidence that the geographic area from which 
background points are drawn has a large effect on the final 
model (VanDerWal et al. 2009, Anderson and Raza 2010, 
Giovanelli et al. 2010), but there are no clear operational 
guidelines on choosing the optimal area. It has generally 
been recommended that one choose a biologically informed 
area, which should be based on “species’ dispersal ability, the 
topographic complexity of the region in question, and the 
distributional patterns of congeneric species’” (Anderson and 
Raza 2010). While most studies choose background points 
randomly, there is evidence that choosing them from locali-
ties where biologically similar species have been documented 
improves model performance (Phillips and Dudík 2008, 
Phillips et al. 2009). This approach is termed target-group 
background; it posits that restricting absences to localities 
that have been surveyed for similar taxa and failed to uncover 
the target species increases the realism of the pool of absence 
localities. Finally, most studies use the default regularization 
parameter set by Maxent, although there is evidence that 
a higher regularization parameter usually produces a more 
accurate model (Anderson and Gonzalez 2011), and that the 
appropriate regularization parameter can be chosen using 
AICc (Warren and Seifert 2011).

A key question that has not been previously addressed is 
whether ENMs provide a better prediction of a subregion of 
the target species’ range if one uses all of the known localities 
for that species (here referred to as the ‘global’ approach) or only 
localities from that subregion (the ‘local’ approach). Addressing 
this question is a central element of the current study.

This question arose as we launched a study to predict 
the range of the endangered California tiger salamander 
Ambystoma californiense (CTS) within Solano County, CA. 
CTS once had a much wider distribution in California, 
but has lost at least 55% of its original range (Jennings and 
Hayes 1994) and shows a marked shift away from lower 
elevations (Fisher and Shaffer 1996). The species starts 
life as an aquatic larva, but spends over 95% of its post- 
metamorphic life underground (Trenham et al. 2000) in 
the burrows of California ground squirrels Otospermophilus 
beecheyi (Loredo et al. 1996) or Botta’s pocket gophers 
Thomomys bottae (Trenham and Shaffer 2005). Post-
metamorphic individuals are only active on the surface 
immediately after metamorphosis or on rainy winter nights 

(Loredo and Van Vuren 1996, Trenham et al. 2000). They 
are thus rarely observed, and most known localities come 
from larval breeding pond surveys. However, adult salaman-
ders travel up to ~2 km from their natal/breeding ponds, and 
understanding the species’ spatial distribution and habitat 
occupancy is an important component of regional conserva-
tion planning (Searcy and Shaffer 2008, 2011). The combi-
nation of its endangered status, exceedingly cryptic activity 
patterns, and importance as an umbrella for habitat man-
agement (Searcy and Shaffer 2011) suggests that accurate 
ENMs describing the distribution of CTS are an essential 
component of effective conservation planning.

In this study, we used Maxent to create 16 ENMs for  
the Solano County population of CTS. These models 
used all factorial combinations of four potential modeling 
refinements: 1) a biologically informed geographic extent 
(Anderson and Raza 2010), 2) target-group background 
(Phillips and Dudík 2008), 3) selecting the regularization 
parameter using AICc (Warren and Seifert 2011), and 4) 
using a local rather than global model. We focused on Solano 
County because the contained salamander metapopulation is 
geographically isolated north of the San Francisco Bay Delta 
near the northern limit of the species’ range (Fig. 1), and 
because the county is actively developing a habitat conserva-
tion plan. We then conducted a countywide survey for new 
CTS localities to ground truth the resulting models. Using 
this new, independent set of presence/absence data we com-
pared the fit of the 16 models to determine which ENM(s) 
provided the most accurate predictions. Our results, while 
specific to our study system, suggest several guidelines for 
model improvements that should have greater generality to 
other systems.

Methods

Niche modeling

We used 21 environmental layers in all of our niche mod-
els. These included the 19 Bioclim layers (Hijmans et al. 
2005; www.worldclim.org), an elevation layer from the 
National Elevation Dataset (www.nationalmap.gov), 
and a potential vegetation layer including 54 vegetation 
types (Küchler 1976; www.portal.gis.ca.gov/geoportal). 
We downloaded the Bioclim layers at the highest available 
resolution (30 arc-second), and then resampled them down 
to a higher resolution (1 arc-second) to match the elevation 
layer. This was accomplished purely by partitioning existing 
cells, so no interpolation was required. The vegetation layer 
was originally a shapefile in a different datum, so we first 
georeferenced it using 10 control points and a cubic con-
volution algorithm and then converted into a raster of the 
appropriate resolution.

Our localities came from four sources: 1) HerpNet (a 
compendium of the herpetology collections of 53 world-
wide museums), 2) the appendix to Shaffer et al. (2004), 3) 
surveys conducted by the East Bay Regional Park District, 
and 4) the UC Davis Herpetology Museum. The Shaffer 
et al. (2004) data set includes some localities which contain  
A. californiense/A. [tigrinum] mavortium hybrids (Fitzpatrick 
and Shaffer 2007), and we only included ponds where the 
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Figure 1. Map of the California counties and all localities used in 
training the niche models. All localities were used to train the global 
model, while only the Solano localities (blue circles) were used to 
train the local model.

majority of the gene pool was from native CTS. Apart from 
these hybrids, CTS only co-occur with other ambystomatid 
salamanders in a handful of ponds in Santa Cruz County, 
giving us confidence that specimens within the range of 
CTS that were identified as CTS were identified correctly. 
To account for specimens georeferenced to localities outside 

Table 1. Description of the four potential ENM refinements tested in this study. All factorial combinations of these refinements were tested, 
yielding a total of 16 models.

Standard approach Potential refinement

Geographic extent Region of California between 34.5 and 39.5°N 
and 118 and 123°W. This combines the two 
most common approaches to choosing a 
geographic extent: using political boundaries 
and choosing an arbitrary rectangle based on 
longitude and latitude.

Seventy-four kilometer buffer around all known 
California tiger salamander localities. Seventy-four 
kilometers is the largest gap within the current 
range of the California tiger salamander, and thus 
represents a distance we know California tiger 
salamanders would have been capable of 
dispersing over the course of their evolutionary 
history.a

Background points Ten thousand randomly chosen background 
points, which is the default setting for Maxent.

Ten thousand target-group background points taken 
from HerpNet (i.e. localities where other 
amphibians and reptiles have been collected).b

Regularization parameter Regularization parameter equal to one, which is 
the default for Maxent.

Regularization parameter chosen based on AICc 
using ENMTools 1.3.

Localities Used all 590 localities from across the species’ 
range (global approach).

Used only the 21 localities from Solano County 
(local approach).

 aWhen combining this refinement with the local approach, we used a different geographic extent. In these models, the geographic extent 
was a rectangle around the Solano County localities that stopped 5 km short of the nearest localities in other counties. All of this extent is 
within 74 km of the Solano County localities, and thus comprises an area that California tiger salamanders could have sampled over their 
evolutionary history. Also, 5 km is considered an upper-bound on the distance that California tiger salamanders can migrate from their breed-
ing sites on an ecological time-scale, so this extent is presumably not being utilized by California tiger salamanders from other counties that 
may have similar climatic tolerances.
bWhen combining this refinement with the geographic extent described in footnote a, we had to use additional sources for target-group 
background points in order to find 10 000 within the specified geographic extent. The additional sources we used were Calflora, CNDDB, 
FishNet, MaNIS, and ORNIS, which contain georeferenced localities for plants, listed species, fish, mammals, and birds, respectively. The 
decreased specificity from using these additional sources was more than made up for by the increased number of background points (i.e. the 
AUC for a model using background points from all of these sources was higher than for a model using only background points from HerpNet, 
but having fewer than 10 000).

the range of CTS, we eliminated all localities from coun-
ties in which CTS is not known to occur. We also removed 
four additional localities that are outside of the recorded 
range of CTS and we believe are in error: Bakersfield  
(Kern County), Davis (Yolo County), San Luis Obispo (San 
Luis Obispo County), and Tehachapi (Kern County). The 
resulting set of 590 training localities are in Supplementary 
material Appendix 1, Table A1. Niche modeling was con-
ducted using Maxent ver. 3.3.3e. We created 16 niche mod-
els – all factorial combinations of our four potential model 
refinements (Table 1).

Surveys

We next downloaded a shapefile from the California Spatial 
Information Library (www.atlas.ca.gov) with all of the 
water bodies in Solano County to identify potential survey 
sites. After extensive landowner negotiations (most potential 
survey sites were on private land) we were able to determine 
presence/absence in 260 ponds, either through our own field 
surveys or those conducted by environmental consultants. 
Surveys were conducted from 2008–2011, always between 
28 March and 13 May. Based on over a decade of exten-
sive field work at Jepson Prairie in Solano County (Searcy 
et al. 2014) this is the time window during which we feel 
most confident that a lack of detection of salamanders can 
be interpreted as a true absence, since larvae are large enough 
to be efficiently sampled and have not begun to metamor-
phose.

Our sampling consisted of a minimum of four seine hauls 
per pond. Each seine haul was either ~25 m in length, or 
completely traversed the pond being sampled, and we used 
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importance), so we based variable importance on percent 
contribution.

Results

Field results

Our field surveys detected 81 salamander presences and 178 
salamander absences, but only 38 of these absences were 
from ponds that we categorized as having all of the appropri-
ate local habitat features to support CTS breeding (Fig. 2). 
Of the 140 non-habitable ponds, our field teams surveyed 84 
and we relied on reports from environmental consultants for 
the other 56. We took the conservative approach of automat-
ically disqualifying the 56 ponds that we did not personally 
survey, since we did not have the opportunity to appropri-
ately assess the local pond features. The remaining 84 ponds 
were disqualified for the following reasons: 39 had insuffi-
ciently long hydroperiods, 22 contained brackish water, 18 
were inhabited by invasive predators, 8 contained abundant 
emergent vegetation, 7 were part of a seasonal watercourse, 
and 4 had an artificial substrate (Supplementary material 
Appendix 1, Table A2).

Model comparison

When comparing all 16 models, the Steel–Dwass method 
separated the models into two groups (Table 2). One group 
contained 12 models that performed equally well, while the 
second group contained four models that underperformed 
the first group. The group of 12 models included all eight 
of the local models and all four global models that utilized 
target-group background. While AUC did not order the 
models in exactly the same way as the Kruskal–Wallis test, 
it did place the same four models at the bottom of the rank-
ing. The mean AUC of local models was 0.024 higher than  
the mean AUC of global models. Including target-group 
background, model selection, and a biologically informed 
geographic extent increased mean AUC by 0.036, 0.006, 
and 0.002, respectively.

Target-group background

Target-group background was the potential modeling  
refinement that yielded the greatest increase in mean AUC. 
In addition, all models that included target-group back-
ground were in the higher ranking group of models based 
on the Kruskal–Wallis test. To understand the difference 
between models with and without target-group background 
(Fig. 3A, B), we first examined the localities that target-group 
background was using as background points (Fig. 4). These 
localities were least dense in the Central Valley, denser in  
the Central Coast and Sierra Nevada, and most dense in 
the Bay Area. As a result, when using target-group back-
ground, environmental factors characteristic of the Central 
Valley were less penalized in the model building process 
because they may simply have been sampled less by biolo-
gists, while environmental factors characteristic of the Bay 
Area were penalized more. Percent contributions associated 

a 5 m long seine with a 4 mm mesh. For each site, we also 
noted any pond characteristics that would prevent CTS 
from utilizing it as a breeding site even if they were in the 
neighboring terrestrial habitat. These pond characteristics 
included: short hydroperiod ( 90 d), presence of intro-
duced predators, brackish water, any indication that at some 
point in the year the pond was part of a flowing watercourse, 
substantial amounts of emergent vegetation ( 10% of  
surface area), or an artificial substrate.

Model evaluation

Our original training data included 21 localities from Solano 
County. We excluded these sites when testing our 16 models, 
since models should not be tested with their training data. 
We also only used absences from ponds that lacked all six 
characteristics, identified above, that might deter CTS breed-
ing from otherwise appropriate breeding sites. This made it 
more likely that our absences actually fell outside of CTS’s 
environmental niche rather than being unoccupied due  
to local habitat features. Maxent’s logistic output can be 
interpreted as the probability of presence (Phillips and 
Dudík 2008). To determine which of the niche models best  
predicted our survey results, we extracted the probability of 
salamander occurrence predicted by each model at each of 
our surveyed ponds. For each pond with salamanders present, 
these probabilities represent the probability of the model in 
question correctly predicting salamander presence. For each 
pond with salamanders absent, one minus these probabilities 
represents the probability of the model correctly predicting 
salamander absence.

To compare the models, we used two approaches. First, 
we used a Kruskal–Wallis test with each pond as a data point 
and the probability of each model making the correct pre-
diction on presence/absence as the observed score (we also 
included a blocking term for locality in the model, since all 
models were applied to the same set of 119 breeding sites). 
We then compared all pairs of models using the Steel–Dwass 
method (Critchlow and Fligner 1991). Second, we com-
pared the AUC scores of each model. The AUC scores used 
for model comparison were all calculated over this identical 
set of presence/absence localities, and therefore are statisti-
cally comparable.

To understand why certain models outperformed others, 
we examined the rules that each model produced to relate 
the different environmental variables to the probability  
of salamander presence. We evaluated both the models’ rela-
tive ranking of the environmental variables, and, for a few 
of the most important variables, the shapes of the functions 
representing the probability of salamander presence. Maxent 
provides two different metrics for measuring variable impor-
tance: percent contribution and permutation importance. 
Percent contribution is the percent of the total variation 
explained by the model that resulted from iterations of the 
algorithm that involved rules based on the variable in ques-
tion. Permutation importance is based on the loss in AUC 
that results from randomly permuting the variable in ques-
tion. Halvorsen (2012) showed that metrics based on frac-
tion of total variance explained (e.g. percent contribution) are 
more reliable than metrics based on AUC (e.g. permutation 
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Figure 2. Results of the countywide survey. Original presences (21), where California tiger salamanders were known to occur prior to the 
survey, are shown in yellow. New presences (81), where California tiger salamanders were discovered during the survey, are shown in green. 
Habitable absences (38), where California tiger salamanders were not found, but where all of the local habitat features appeared appropri-
ate for breeding, are shown in purple. Non-habitable absences (140), where California tiger salamanders were not found, but where either 
the local habitat features could not be properly assessed, or where the local habitat features appeared inappropriate for breeding, are shown 
in red.

Table 2. Ranking of the 16 niche models based on rank sums from the Kruskal–Wallis test. The types of model are either global (used all  
590 localities) or local (used only the 21 Solano County localities), but all models were evaluated using the same set of 119 new localities. 
Parenthetical listing of the model improvements that were included range from none of the tested improvements to all three. Models with the 
same letter in the significance grouping column were not significantly different from each other based on a Kruskal–Wallis test. Models were 
compared over the combined set of new presences and habitable absences. AUC values over the same set of localities are also  
provided. They do not yield precisely the same ranking, but they do divide the two significance groupings similarly.

Model Significance 
grouping Rank-Sum AUC

Global (all) A 1144.57 0.8483
Global (target-group background  model selection) A 1115.83 0.8668
Global (target-group background  geographic extent) A 1113.5 0.8471
Local (target-group background) A 1069.85 0.8635
Local (model selection) A 1064.43 0.8419
Local (geographic extent) A 1050.92 0.8558
Local (geographic extent  model selection) A 1037.91 0.8359
Global (target-group background) A 1036.5 0.8635
Local (target-group background  model selection) A 1036.27 0.8681
Local (target-group background  geographic extent) A 1026.83 0.8528
Local (none) A 1011.54 0.8454
Local (all) A 996.55 0.8255
Global (geographic extent  model selection) B 741.69 0.8210
Global (model selection) B 634.93 0.8086
Global (geographic extent) B 594.71 0.7981
Global (none) B 563.97 0.7430

with temperature seasonality, vegetation, and annual pre-
cipitation were most strongly altered by this shift in back-
ground points. When using target-group background, the 
percent contribution of temperature seasonality and annual 
precipitation decreased by 15.6 and 4.1%, respectively. This 

released constraints that those layers had been placing on 
the model, allowing it to expand into drier, more seasonal 
areas, such as the Central Valley. Using target-group back-
ground increased the percent contribution of vegetation by 
5.0%, and the constraints associated with this layer increased  
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Figure 3. Model comparison. For all panels, red circles represent 
absences and blue circles represent presences. Light shading repre-
sents areas with high modeled habitat suitability and dark shading 
represents areas with low modeled habitat suitability. (A) Average of 
the four global models that include target-group background. (B) 
Average of the four global models that do not include target-group 
background. (C) Average of the four local models that do not 
include target-group background. To see the effect of target-group 
background, compare panels (A) and (B). To examine the effect of 
local versus global models, compare panels (B) and (C).

Figure 4. Distribution of pseudoabsences used in the models utiliz-
ing target-group background. 10 000 background points were used 
in the models, but for easier viewing a random subset of only 5000 
are shown here. When using target-group background a much 
lower density of background points are taken from the Central Val-
ley compared to the Bay Area. This is representative of the relative 
densities of museum specimens taken from each region.

predicted habitat suitability in riparian forests (characteristic of 
the Central Valley) and decreased predicted habitat suitability 
in mixed hardwood forests (characteristic of the Bay Area).

Local versus global

The other set of models that were uniformly placed in the 
higher group by the Kruskal–Wallis test were the local mod-
els. The local and global models have very different response 
curves for the two environmental factors with high percent 
contributions for both sets (elevation and precipitation of 
the driest quarter), and we think that this is the explanation 

for most of the differences between the two sets of mod-
els (Fig. 3B, C). Precipitation of the driest quarter makes 
a 35.2% and a 10.0% contribution to the local and global 
models, respectively. The response curve for the local models 
limits CTS occurrence to areas with less than 6 mm of rain 
during the driest quarter, while the response curve for the 
global models expands this to areas with up to 10 mm of rain 
during the driest quarter (Fig. 5A). The percent contribution 
of elevation to the local and global models is 17.6 and 7.0%, 
respectively. Again, the local model predicts a very narrow 
range of habitat suitability (limited to areas below 42 m ele-
vation), while the global model predicts a much wider range 
of habitat suitability (including areas up to 1279 m). These 
wider ranges of predicted suitability cause the global mod-
els to predict CTS presence in the Cordelia Hills and Vaca 
Mountains, two high-elevation regions of Solano County 
that are nearer to the coast and receive moisture from fog 
even in the summer. CTS occur in very similar sets of hills 
less than 30 km distant on the south side of the San Francisco 
Bay Delta, but they do not occur in the Cordelia Hills or 
Vaca Mountains, which leads the local model to outperform 
the global model in Solano County (Fig. 5B).

Discussion

Our results clearly demonstrate the benefits of using both 
target-group background to correct for sampling bias  
and local data to predict local occurrence probabilities.  
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Figure 5. Differences between local and global models. For both panels, red circles represent absences and blue circles represent presences. 
(A) Precipitation of the driest quarter: green areas receive 5 mm of precipitation or less; orange areas receive 6 mm of precipitation or more. 
(B) Elevation: green areas are below 42 m; orange areas are above 42 m. Most presences are in the areas with 5 mm of precipitation or less 
during the driest quarter and in areas below 42 m. These are the areas favored by the local models.

We are reasonably confident that CTS in the Solano County 
metapopulation occupy a remnant habitat type that was 
once typical of the species as a whole, but has become rare 
as a result of agricultural and urban development and inva-
sive species distributions in the Central Valley. Rangewide, 
CTS has shown a pronounced shift toward higher eleva-
tion site occupancy (Fisher and Shaffer 1996), although the 
species has persisted in low-elevation sites locally in Solano 
County, presumably leading to the superior performance of 
target-group background and local data. Whether this result 
is generalizable beyond our case study is an open, empiri-
cal question, but based on our interpretation of the models 
that utilized target-group background and local samples, 
we believe that the refined prediction probabilities that we 
found will be common to many other systems.

Importance of target-group background

Target-group background accounts for sampling bias of pre-
vious surveys by selecting background points from localities 

where closely related species have been recorded, or where 
species that require similar survey methods have been found 
(Phillips and Dudík 2008). This assures that background 
points are drawn from a pool of localities that biologists have 
actually visited and thus had the potential to observe and 
record the target species. Moreover, if biologists were record-
ing closely related taxa, it is more likely that they would have 
recorded the target species if it was present, since many field 
biologists are trained to be broad taxonomic specialists (orni-
thologists, herpetologists, etc.). Similarly, if they were using 
survey methods that would have discovered the target species 
if present, then they may have been more likely to record it. 
In remote areas, this can be very important since there may 
be a limited number of places that biologists can access (e.g. 
near roads, towns, waterways, or airstrips).

We found this effect to be equally important in the  
well-sampled habitats of central California, where land  
conversion and private property rights can also severely  
limit access by biologists. Using informed background  
points appears to be correcting for the fact that open space 
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1880s, have never been subject to intensive agriculture. This 
renders CTS habitat in Solano County unique compared to 
the rest of the currently occupied range, where most locali-
ties are now restricted to hilly areas and only 16% fall below 
42 m. While they probably once lived throughout the low-
lying floor of the Central Valley (as evidenced by relictual 
populations scattered across the Central Valley floor), most 
CTS populations have been extirpated from this area, and 
the species largely persists in a ring in the surrounding foot-
hills (Fig. 1). This elevational shift is reflected in the higher 
elevation of current compared to historical museum locali-
ties (Fisher and Shaffer 1996). In Solano County, some of 
the hilly areas (e.g. Montezuma Hills) harbor the more pro-
ductive soils and have been plowed, making it quite possible 
that they were home to CTS breeding populations prior to 
European agriculture, but that these populations have been 
extirpated within the last 150 yr. Thus, to some extent the 
pattern of land use in Solano County is the inverse of that 
in the rest of the range, lending a considerable advantage to 
the local models.

A third possibility for the success of the local models 
resides in the null expectation that the local models should 
simply perform better because of spatial autocorrelation. 
Since the local models are fit only to the Solano County 
localities, they should be more spatially correlated with 
those localities. If new salamander localities discovered by 
our survey are also spatially correlated with the previously 
known localities, then the local model will do a better job of 
predicting their distribution based on this autocorrelation. 
We tested this possibility with a null model that assigned a 
probability of salamander presence equal to the inverse of 
the distance to the closest known locality (Hijmans 2012). 
This null model had an AUC score very near the mean of 
our other models (0.847), and thus we cannot reject the 
possibility that spatial autocorrelation explains, or at least 
contributes to, the success of the local models. However, 
this does not mean that the local models are uninformative. 
Hijmans (2012), which emphasizes the necessity of making 
comparisons against null models, also acknowledges that 
for small, clustered ranges (like the Solano County CTS 
population), it will be impossible to distinguish a successful 
ENM from a null model, even when the range is actually 
driven by strict habitat requirements. All three interpreta-
tions thus seem to provide plausible explanations, and they 
are not mutually exclusive. A combination of all three may 
be driving the success of the local models.

Generality of results

This is the third study to evaluate target-group background 
with Maxent using presence–absence data (Phillips and 
Dudík 2008, Phillips et al. 2009), and the similarity of the 
results between the three indicates that using target-group 
background, or another form of bias correction, should 
become standard practice. The mean increase in AUC  
from using target-group background in our study (0.036) 
is very similar to the magnitude of model improvement 
observed in those other studies (0.031 and 0.029 in Phillips 
and Dudík (2008) and Phillips et al. (2009), respectively). 
Sampling bias in museum localities is almost certainly 

with reasonable biodiversity is only present and accessible 
in certain parts of central California. CTS were not the 
only species extirpated from the floor of the Central Valley 
when it was converted to agriculture in the 1880s, and most 
museum collecting in the region did not begin until the 
early 1900s, leading to few museum specimens from the 
Central Valley. By incorporating this into the ENM, target-
group background causes Maxent to allot lower penalties 
to environmental parameters characteristic of the Central 
Valley, since it correctly views them as undersampled. This is 
important for the global models, because the Greater Jepson 
Prairie Ecosystem (which encompasses 79% of the known 
CTS localities in Solano County) is typical of much of the 
former Central Valley habitat and allotting lower penalties to 
this type of habitat allows the global models to incorporate 
more of the Solano County range. This highlights an addi-
tional value of target-group background: it can correct for 
land use history in addition to correcting for sampling bias, 
as it was originally designed to do. Given that it can do both 
increases the probability that it will be useful in a wide range 
of ENM studies.

Local vs global approach

There are at least three possible interpretations for the 
enhanced performance of local models over global ones 
without target-group background. The first is that the 
Solano County CTS population is locally adapted to unique 
environmental conditions. The global models without tar-
get-group background predicted salamander occurrence in 
two hill regions (Cordelia Hills and Vaca Mountains) that 
contain a number of constructed cattle ponds where all local 
habitat features appear perfect for CTS breeding and that 
appear to be virtually identical to regions where CTS occur 
further south in the Bay Area and Coast Range. In addition, 
these hills form the edge of the fog bank during California’s 
hot, dry summer, and thus receive more summer precipita-
tion than the rest of Solano County. It is possible that the 
Solano County California tiger salamander population is 
locally adapted to the drier conditions further inland and 
cannot persist in the moister, more coastal hill habitat. In 
support of this interpretation, molecular data indicates that 
the Solano County CTS population is more closely related 
to CTS in the Sierran foothills, where it is even drier, than 
to the geographically proximate populations in the Bay Area 
(Shaffer et al. 2004).

A second interpretation for the success of local over global 
models without target-group background is that local idio-
syncrasies of land use history shape species distributions, and 
that local models are better able to capture and predict such 
details than global models. In our study, the local models 
have a narrow elevation range focused on elevations between 
0 and 42 m. In Solano County, 91% of the known CTS 
localities fall within this range, and most are located in the 
Greater Jepson Prairie Ecosystem (Witham 2006). This 
region is known for its alkaline, saline, and clay-rich soils 
that form an aquatard that collects water on the surface in 
large vernal pools, creating optimal CTS breeding habitat 
(Bates 1977). These soils are also infertile and, unlike most 
of the Central Valley which was leveled and plowed in the 
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Conclusions

Our study illustrates how a local ENM, trained with a  
limited set of localities proximal to the area of interest, can 
outperform a global ENM trained with a much larger data 
set drawn from the entire species range when the goal is to 
understand and predict a species’ distribution in a specific 
subregion of its range. It also illustrates the utility of tar-
get-group background, which can correct for geographical 
variation in land use history in addition to sampling bias 
in training localities. We confirmed these results with pres-
ence/absence surveys in our target region. Such field-based 
confirmation is rare, and gives us considerable confidence 
in our modeling results. It also allows us to assign statistical 
probabilities to our among-model comparisons. We recom-
mend increased use of target-group background generally, 
and local models for local range and occupancy predictions. 
Finally, we emphasize the unique contributions that pres-
ence/absence data can make when new ecological niche 
modeling methods are being tested, and recommend field-
verified surveys as the best data type for model comparison 
and evaluation of model refinements.
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