

BIOGRAPHY

Trish Tatarian, MSc

Researcher (published) 10 years: Radio-telemetry Bd occurrence in Sierran populations Genetic occurrence of Sierran populations Biological consultant >20 years

BIOGRAPHY

Devii Rao

University of California Cooperative Extension Livestock & Natural Resources Advisor for Santa Cruz, San Benito, and Monterey Counties

ACKNOWLEDGEMENTS

Elkhorn Slough Coastal Training Program Grey Hayes

> Norm Scott Galen Rathbun

Bert Mulcahey, Jose Setka, Thomas Newcomb, Jessica Purificato – EBMUD biologists; Greg Tatarian – Wildlife Research Associates; Cindy Roberts – USFS; Jane Valerius Environmental Consulting; Allison Batteate – Co Co Water District

ADDITIONAL INFORMATION

WWW.ELKHORNSLOUGHCTP.ORG

See: Bibliography Peer-reviewed papers

WORKSHOP OVERVIEW

- Gain a more complete understanding of the biological requirements of the species.
 Identify key components of occupied CRF habitat in a variety of situations, from man-made ponds, to in-stream pools, as well as
- Identify management strategies and solutions used to enhance aquatic and upland habitats to benefit the species.
- Use case examples and success stories to apply effective management strategies and solutions.

TOPICS COVERED

Management Objectives Biology Characteristics of Occupied Ponds Design and Management of Ponds Management of Habitats **Control of Invasive Species** Planning at the Landscape Level **Regulatory Requirements**

IMPORTANT MANAGEMENT OBJECTIVES

- Manage populations, not individuals
- Focus on breeding habitat vs. adult habitat more bang for your buck
- Set clear management and monitoring goals

MANAGEMENT

Definitions

- Stewardship looking after a population
- Manipulative direct (headstarting young) or indirect (altering habitat or predators)

(Caughley and Sinclair 1994)

MANAGEMENT

Some Key Management Questions:

- What are the threats to CRF in the region and project
- How can the site be managed to increase or maintain CRF populations at local and regional level?
- What management practices are currently being used on the site - are they compatible with CRF?

MANAGEMENT

Some Relevant Elements Within a Management Plan:

- Maintenance/restoration of a suitable water body.
- Protection of buffer zones of natural vegetation to protect core breeding sites and refugia.
- Protection of integrity of ecological connectivity among wetlands in the landscape.
- Identify and resolve conflicts between current management practices and CRF.

Breeding Habitat

BIOLOGY						
Survivorship						
Stage	Age (months)	Survival	Number of Individuals			
Egg>>metamorph	0-5	1-5%**	125			
Metamorph>> juvenile	5-12	10%	12.5			
Juvenile>>adult	12-24	25%	~3.12			
Adults	24-80	~33%/yr	1			

Upland Habitat

Terrestrial prey -90% of total prey items (Bishop 2011)

BIOLOGY

BIOLOGY

Physiology of Anurans

Majority of water loss is through the skin

Reabsorption through the ventral pelvic region.

The larger the size the greater the distance travelled between aquatic sites.

Small amphibians have proportionately more surface area and, therefore, have higher rates of evaporative loss.

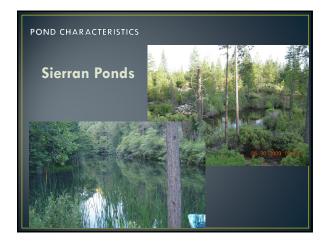
Vells 2007)

CHARACTERISTICS OF PONDS OCCUPIED BY CRF

POND CHARACTERISTICS

Breeding Ponds

Lentic habitats that provide aquatic breeding and nonbreeding habitat.

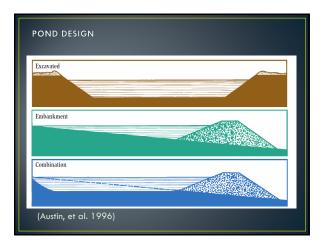

Coastal

Inland

Sierran

POND CHARACTERISTICS							
Coastal and Inland Ponds							
		San Mateo Co (Reis 1999)	Recovery Plan (USFWS 2002)	Santa Cruz Co (Bulger et al 2003)	Sonoma Co (Cook and Jennings 2007)	Marin Co (Fellers and Kleeman 2007)	Contra Costa Co (Tatarian 2008)
Elevation (m)		0-10	<1,050	0-300	476	43	113
Surrounding Vegetation communities		Freshwater and brackish marsh, ponds and riparian	Variety	Redwoods and mixed conifer - hardwood	Mixed hardwood conifer	Grasslands and riparian	Grasslands and aak savanna
Water depth (m)		0.05-0.75	>0.7	NA	1.5	0.75-1.5	0.6-1.8
Pond Size (m ²)			NA	NA	110,000	0.5-2(6)	0.33 -0.8
Habitat	Pool (instream)	V	V				V
Habilai	Pond (isolated)	V	1	1	1	1	
Hydrology	Perennial	Ń	V	1		V	1
Hydrology	Intermittent	V	1	1	1	V	1
Emergent/	Dense (>25%)	Ń			1	V	
shoreline	Limited (<25%)						V
Fish	Native	V					
	Introduced						
Bullfrogs		1	V		1		

Sierran Ponds							
		Butte Co Hughes	Nevada Co Sailor Flat	El Dorado Co Spivey	Placer Co Big Gun	El Dorado Co Bear Creek	Little Oregon Creek
Elevation (m)		772	929	979	1014	792	624
Surrounding Vegetation communities		Montane hardwood conifier	Montane hardwood conifer	Sierran mixed conifer	Ponderosa pine/Mixed chaparral	Martane hardwood corifer	Montane hardwood conife
Water depth (m)		0.3 – 1.4 m	1.>2.5	1->2.5	1->2.5	1->2.5	<1
Pond Siz	ze (acres)	0.25	0.25	1.5	0.5-2 (6)	1.5	0.03
Habitat	Pond (instream)			V		V	
Habilat	Pond (isolated)	V	1		1		Ń
Hydrology	Perennial		1	V	1	V	
Hydrology	Intermittent	V					Ń
Emergent/	Dense (>25%)	V	1				
shoreline	Limited (<25%)			1	1	~	1
Fish	Native					V	
Fish	Introduced				1		



POND DESIGN

When Creating Ponds, Consider: Types of ponds

Permits Required – CDFW, ACE, RWQCB (e.g.) damming a drainage

POND DESIGN

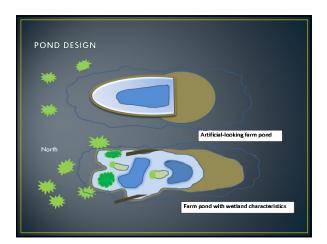
LOCATION is Everything (Comparisons between two 1-acre ponds)

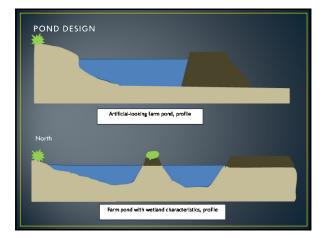
Ohio- supported by 10-15 acre watershed (Austin, et al. 1996) California - supported by 50-100 acre watershed (Deal, et al. 1997)

BUT

Contra Costa County —supported by 10 acre watershed (Deal, et al. 1997)

Marin County - supported by 2 acre watershed (Deal, et al. 1997)


POND DESIGN


Providing Suitable Structure

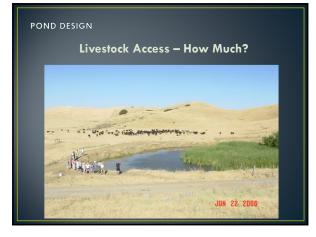
Goal: Creating Microhabitats

- Heterogeneity of habitats cattails, willows, rushes, floating veg., open water
- Varied water depths deep water, shallow water
- Soils support vegetation and hold water

POND DESIGN

Use Livestock Ponds to Manage for CRF Population BUT

- Rarely maintenance free
- Manage for soil accretion/aquatic biomass accumulation
- Prevent individual loss



POND DESIGN

Effects of Loss or Modification of Habitat

Loss of vegetation: fewer oviposition sites

Soil accretion: shallower ponds, increased evapotranspiration, change in vegetation components, less open banks and fewer sunny areas, less refugia, fewer oviposition and tadpole rearing sites

Maintenance and Rehabilitation

POND MANAGEMENT

Appropriate Seasons for Maintenance

Dry season – May 15 - October 15 During the driest season – September –October *After young have metamorphosed

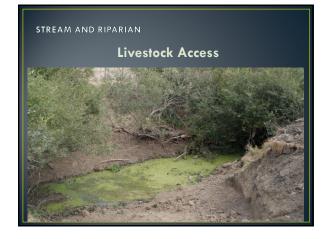
- Pond at a naturally low water level
- Pond refills naturally with next rain event

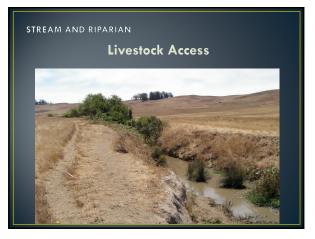
MANAGEMENT OF STREAM AND RIPARIAN HABITATS

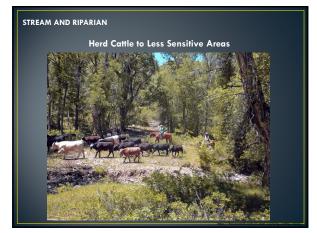
STREAM AND RIPARIAN

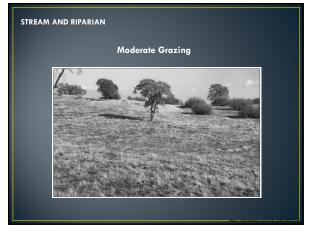
STREAM AND RIPARIAN

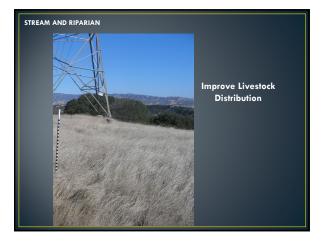
Lotic habitats and associated vegetation that help with the retention of biological components to maintain chemical, physical and biological values. The width of the riparian corridor dependent on water table.

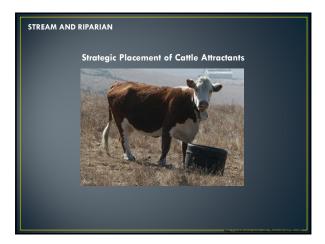


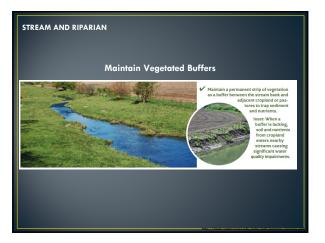

	Coastal	Inland	Sierran
Inundation period	Typically perennial, but calm and stable during breeding	Typically ephemeral, with perennial pools	Ephemeral, with perennia pools
Vegetation	Emergent and riparian	Emergent veg for egg laying and structures to escape predators	Emergent and exposed northern banks
Depth	Perennial stream = 18 inches	Perennial stream = 18 inches Perennial pool = 2 feet	Dammed pools (>3 feet)
Livestock Access Recommendation	Yes, year-round	Yes, limitations	No
Fish Present	Typically absent	No	Yes









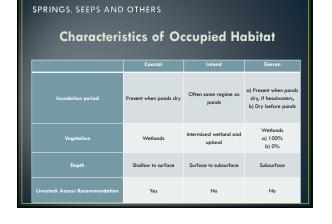


Residual Dry Matter Standards						
Table 2. Minimum RDM standards for annual grassland/hardwood rangeland in pounds per acre (dry weight)						
Woody cover	RDM standard for percent slope (lb/acre)					
(%)	0–10	10–20	20–40	>40		
0–25	500	600	700	800		
25-50	400	500	600	700		
50-75	200	300	400	500		
75-100	100	200	250	300		
Note: Metric conversion: 1 lb/acre = 1.12 kg/ha.						
For areas with average annual rainfall between 12 and 40 inches						

STREAM AND RIPARIAN

Effects of Loss/Modification of Habitat

- Loss of riparian vegetation = fewer oviposition sites
- Decreased shading of aquatic systems = increased evapotranspiration, change in vegetation components, more open banks, more erosion
 - Decreased structure in stream = less refugia
- Increased flow of water = fewer oviposition and tadpole rearing sites



MANAGEMENT OF SPRINGS, SEEPS AND OTHER MOIST HABITATS

SPRINGS, SEEPS AND OTHER

Lentic habitats provide surface and sub-surface flows that support wetland vegetation within upland habitats or as headwaters to perennial creeks. <section-header><section-header><section-header><text><text>

SPRINGS, SEEPS AND OTHER

Effects of Loss/Modification of Habitat

• Change in surface or subsurface flows = loss of refugia

• Loss of microclimate = loss of rehydration potential for individuals

UPLAND HABITAT MANAGEMENT

UPLAND HABITAT MANAGEMENT

Foraging Stream flood escape Corridors

Microhabitats: boulder, barn door laying on the ground, large logs, grassland thatch, cow hoof print, crevice, ground squirrel burrow

UPLAND HABITAT MANAGEMENT								
Residual Dry Matter Standards								
Table 2. Minimum RDM standards for annual grassland/hardwood rangeland in pounds per acre (dry weight)								
Woody cover	RDM standard for percent slope (lb/acre)							
(%)	0–10	0–10 10–20 20–40 >40						
0-25	500	600	700	800				
25-50	400	500	600	700				
50-75	200	300	400	500				
75–100	75–100 100 200 250 300							
Note: Metric conversion: 1 lb/acre = 1.12 kg/ha.								
For areas with average annual rainfall between 12 and 40 inches								

UPLAND HABITAT MANAGEMENT

Summary of Livestock Grazing Tools

- Modify timing of grazing
 Modify number of cattle
- 3) Provide additional water troughs,
- strategically placed away from water ways 4) Provide strategically placed salt/minerals

- 6) Install exclosure fencing7) Herd livestock away from sensitive areas
- 9) Modify kind (species) and class (gender or age class) of grazing animal

UPLAND HABITAT MANAGEMENT

Rodent Control

- Beneficial: control dam face undermining
- Detrimental: potential for CRF to be killed in burrows from fumigation, plugging, or igniting

Recommendations

• Enhance raptor populations, use lead-free ammunition

CONTROL OF INVASIVE SPECIES

CONTROL OF INVASIVE SPECIES

PLANTS INVERTEBRATES (e.g. CRAYFISH) VERTEBRATES (FISH, BULLFROGS)

CONTROL OF INVASIVE SPECIES

PLANTS

Aquatic species (i.e., parrotfeather (Myriophyllum aquaticum)) may increase sedimentation in a pond, decrease habitat heterogeneity, and prevent availability of shallow open water for metamorphs to


Upland species (i.e., Harding grass (Phalaris aquatica) and velvet grass (Holcus lanatus) can grow in dense stands and decrease habitat heterogeneity.

CONTROL OF INVASIVE SPECIES

CONTROL OF INVASIVE SPECIES

HERBICIDES

Buffer zone (no-use) for ground application 260 feet from the edge of CRF habitats and 400 feet buffer for aerial application from the edge of all habitats, including upland habitat. Regulations apply in 33 counties where CRF are known to occur.

(California Department of Pesticide Regulation 2013 http://www.cdpr.ca.gov/docs/endspec/rl_frog/index.htm)

CONTROL OF INVASIVE SPECIES

HERBICIDE EXCEPTIONS: Invasive Species and Noxious Weed Control Programs

- Handheld devices doing spot treatments allowed beyond 15 feet from aquatic habitats
- No pesticide use during precipitation or 24 hrs. prior
- Applied by certified applicator
- Additional exemptions

(California Department of Pesticide Regulation 2013 http://www.cdpr.ca.gov/docs/endspec/rl_frog/index.htm)

CONTROL OF INVASIVE SPECIES

INVERTEBRATES

Crayfish (Procambarus sp., Oronectes sp. and Pacifistacus sp.): Require CDFW crayfish permit and Scientific Collecting Permit for Pacifistacus sp. (CDFG Informational Leaflet No.31)

Allowable methods: hand, hook, line, dip net (<6 feet) or trap (<3 feet of any dimension)

CONTROL OF INVASIVE SPECIES

Crayfish Biology

- Burrow depth 1-3 feet, and deeper during drought conditions
- Opening of completed burrow is covered at the top with a mud plug
- Typically permanent ponds with warm waters
 Reproduction spring through autumn
 Eggs hatch fall or following spring

CONTROL OF INVASIVE SPECIES

Crayfish Control Recommendations

- Pond drainage depending on CRF metamorph presence
- Trapping
- Increasing water depth to lower temperatures
- Increasing heterogeneity of vegetation

CONTROL OF INVASIVE SPECIES

VERTEBRATES

Fish (i.e., Mosquitofish (Gambusia affinis) and Centrarchids (e.g., green sunfish (Lepomis cyanellus), etc): Requires CDFW fishing license

Bullfrogs (Lithobates catesbeianus): Requires CDFW fishing license; allowable methods are bow and arrow, air gun if stipulated specifically through CDFW Scientific Collecting Permit

CONTROL OF INVASIVE SPECIES

Vertebrate Control Recommendations

- Pond draining
- Deepening pond to lower temperatures
- Increase heterogeneity of vegetation

Bullfrog control? That's another story...

CONTROL OF INVASIVE SPECIES

Bullfrog Biology

- Travel overland up to 1 km Prefer non-vegetated habitats Warmer waters

- Larvae typically over-winter BUT can metamorphose the same year as hatching (Cohen and Howard 1958, Moyle 1973, Tatarian, pers.
- Larvae can sustain themselves in mud when ponds are drained Fast colonization of habitats, typically perennial ponds (larger) and streams, except in Sierra Foothills (Moyle 1973).

Ephemeral habitats are next to be invaded

CONTROL OF INVASIVE SPECIES

Bullfrog Control Recommendations

Effective with isolated populations:

- Decrease bullfrog population growth rate (modeling): Adult control, mortality rate of > 65%/year every two years or draining ponds every two years. (Doubledee, et al. 2003)
- Metamorph control in fall is the most effective. (Govindarajulu, et al. 2005)

10/6/2016

Managing Habitats for the California Red-legged Frog

PLANNING AT THE LANDSCAPE LEVEL

LANDSCAPE LEVEL

BUFFER ZONES

BREEDING SITE NETWORKS

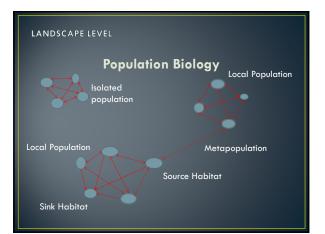
MOVEMENT CORRIDORS

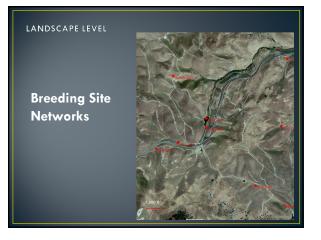
LANDSCAPE LEVEL

Buffer Zones

Purpose - Retain aquatic conditions, and allow individuals to forage, escape into refugia and move throughout the habitats.

Components – woody debris, leaf litter and duff, forbs, shrubs, trees


Depth-of-edge microclimatic influences dependent on vegetation beyond the immediate riparian habitat. (Richter 1997) e.g. large trees and shrubs vs grasslands


LANDSCAPE LEVEL

Buffer Zones

Beneficial to habitat - Retention of biological components to maintain chemical, physical and biological values of lentic and lotic habitats. Vegetation width and composition important during droughts.

Beneficial to individuals – Supports the home range of the species. Movement from breeding to non-breeding habitat (aquatic and non-aquatic) is unique at each wetland. (*Rittenhouse and Semlitsch* 2007)

LANDSCAPE LEVEL

Movement Generalities

• Most CRF do not move far – adults don't explore

- Movement occurs between aquatic habitats
 - CRF move during damp conditions (first rains and winter)
 - - CRF move at night
- But, CRF movement corridors can be difficult to detect or recognize (e.g. not always aquatic, topography not as limiting as one imagines).

LANDSCAPE LEVEL

Movement Corridors

Beneficial to the population – allows for migration between local populations

"One size does not fit all"

- Behavior variances due to: Climate
 - Vegetation
 - Timing
 - Predators

LANDSCAPE LEVEL

Defining Elements of Good CRF Integrated Landscape Management

- Maintain breeding ponds and provide metamorph habitat
- Maintain landscape connectivity, which is dependent on the location (i.e., coastal, inland or Sierran habitats).
- Look for direct line movements between water bodies.
- Create "stepping stones" (structures) between water bodies (occupied) and other habitats (unoccupied) and resources.
- Take into account ephemeral changes to the landscape.

REGULATORY REQUIREMENTS

REGULATORY REQUIREMENTS

- Section 7 (B.O.) or 10 consultation (HCP)
- Maintenance under 4(d) rule artificial stock ponds, and routine maintenance
- Safe Harbor Agreement if listed species habitat maintained, landowners are not prohibited from incidental take (injure or kill) of state-listed as long as the take occurs on a farm or ranch during the course of routine and ongoing agricultural activities

REGULATORY REQUIREMENTS

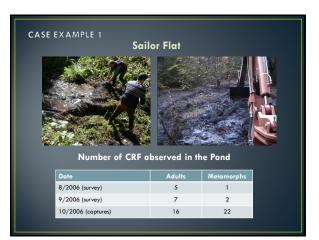
- Some cost-share incentives (Recovery Program, Partners for Fish and Wildlife)
- RWQCB aquatic habitats
- ACE aquatic habitats
- CDFW aquatic habitats
- Enhance habitat for population BUT no "take" of individuals

CASE EXAMPLES

CASE EXAMPLE 1

Sailor Flat

- 100 % aquatic vegetation cove
 100 % shade
- 100 % shade cover in shallow areas
- Soil accretion c shallow areas


CASE EXAMPLE 1

Sailor Flat

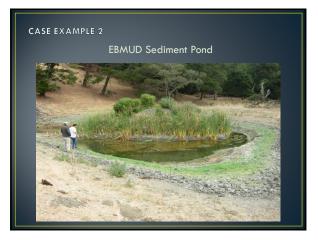
Cooperative Agreement – USFWS, land owner
 Pre-construction surveys to

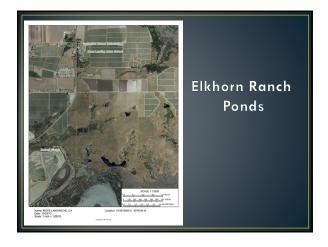
determine population

- Removal of individuals the night before dewatering
- Held individuals on-site during removal
 - Post-construction surveys to determine population

CASE EXAMPLE 2

EBMUD Sediment Pond – Contra Costa County*


Cattle grazing and stock ponds 1990's - CRF population high 1996 - CRF listed and maintenance stopped 2000's - pond started to fail and CRF population down to 5 localities 2008 - created HCP as management document with


various restoration methods (research)

 $2013-\mbox{CRF}$ population at 39 locations

(*Bert Mulchaey, Biologist, EBMUD, pers. comm. 2013)

Eradication at a large scale as part of a conservation action HO: California red-legged frog change their habitat use or hide in presence of bullfrog

- 12 ponds supported CRF and BF in which BF were controlled
 BF Removal June Oct. 2004, until 2006. Hand capture, gigs, seining
 Inverse relationship of number of BF to CRF
 CRF adults used willows and tule, and were closer to shore in presence of BF. This is habitat typically used by smaller CRF.
 High resource partitioning when no BF present CRF able to use all habitats and reduced potential predation on smaller CRF by larger CRF.

WHERE ARE THE FROGS?

Pond A Both Pond B

