California Tiger Salamander Biology and Conservation

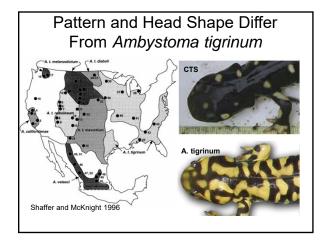
Presentation Authors: Pete Trenham & Chris Searcy ptrenham@gmail.com

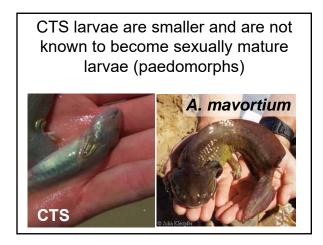
Workshop Topics

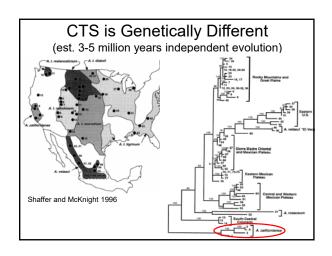
- 1) How is the CTS different from other tiger salamanders?
- 2) Where does it occur and what limits its distribution?
- 3) Why has it declined and what are the greatest threats?
- 4) How to identify the different stages in the CTS life cycle.
- 5) Life history, demography, and population dynamics.
- 6) Ecology: habitat attributes, prey, and predators.
- 7) Movements, metapopulations, and landscapes.
- Strategies for avoidance, minimization, conservation and recovery
- 9) Survey methods, requirements, and strategies

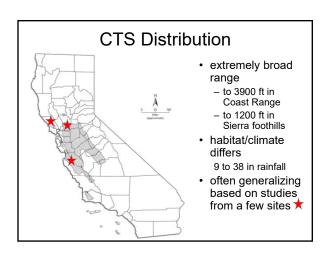
Key Facts for Understanding CTS

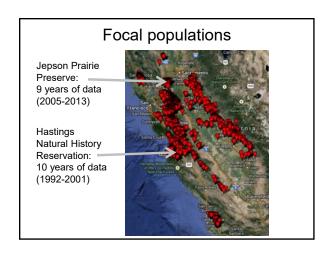
- Breed in ponds develop as aquatic larvae
 ponds must hold water until at least May
- · Larger ponds are better (but not permanent ponds)
- The CTS is primarily a terrestrial beast
 - live in small mammal burrows
 - observed to move >1.5 km overland
- Large areas of <u>contiguous or interconnected habitat</u> is what's needed for its conservation
 - CTS coexist with certain human land uses
 - Habitat loss (and hybridization) are the main threats

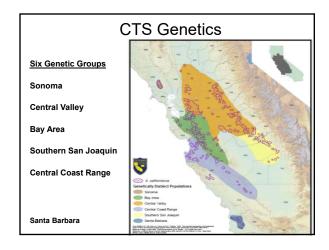

Getting your own permit

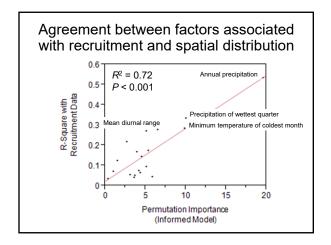

- Start early! It will likely take a year (or more)
 - talk to agency representatives throughout process
- FWS requirements
 - B.S. in biology (or equivalent experience)
 - Course work in herpetology (or eq. exp.)
 - Study/survey design experience (5surveys/40hrs)
 - Handling experience (>25, including >5 larve)
 - Familiarity with habitats
 - Familiarity with co-occurring amphibians
 - Ability to identify vegetative components of habitat


What is a CTS

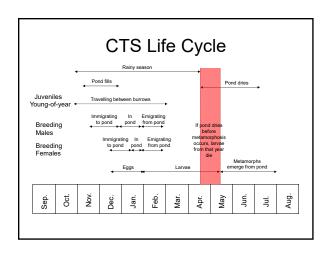

- Amphibian
 - aquatic eggs, thin scaleless skin
- Salamander
- four legs and a tail
- Mole salamander
 - Family Ambystomatidae
- Tiger salamander
- large terrestrial salamanders and the only group to occupy grasslands
- · Ambystoma californiense

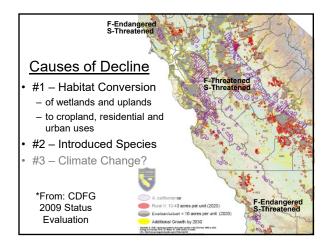


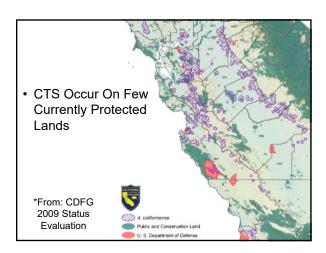


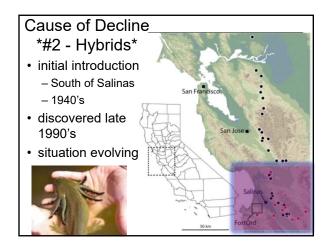


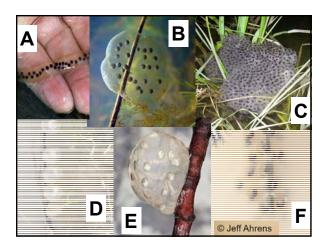





Climatic factors significantly correlated with recruitment									
	Bioclim variable	R ²							
	Annual precipitation	+	0.53						
	Precipitation wettest quarter	+	0.33						
	Minimum temperature of coldest month	+	0.28						
	Mean diurnal range	-	0.28						
	Precipitation wettest month	+	0.27						
	Precipitation coldest quarter	+	0.22						
	Searcy, C. A. & H. B. Shaffer 2016. The	e American I	Vaturalist.						



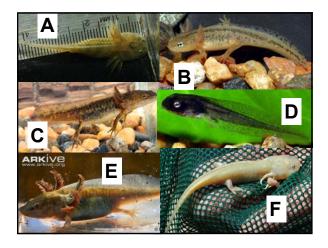



Introductory Main Points

- · CTS habitat and range
 - Breed in ponds
 - Upland habitat with grasslands
 - From Sonoma Co. to Santa Barbara Co., in areas with appropriate climate
- Annual cycle driven by rainfall and pond drying
- · Key threats/reasons for listing
 - Habitat loss
 - Hybridization

Embryo Identification/Morphology

- · 2-3mm diameter
- whitish to grey to yellow
- w/jelly 4.5-10mm
- attached to vegetation or other materials
- singly or small clusters
- grape-like (each in its own separate membrane)
- Detectable <u>mainly</u> Dec-Feb



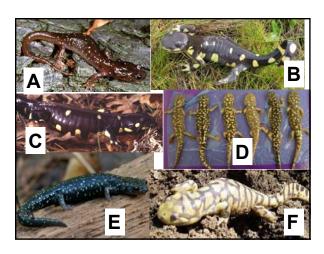
Larvae - Identification/Morphology

- Fish-like
- · Feathery external gills
- Four legs
- 30 to 150 mm
 - 1 to 6 inches
- · Color variable
- · No stripes or real pattern
- Potentially detectable year-round (mainly March-June)

- - NO nasolabial groove
 - black to light brown backgound white to light yellow
 - rounded spots

 size/amount of spots
 varies
 - toes pointed
 - NOT squared

Sexing Adults

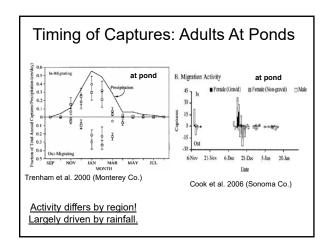

- Males have longer tail and a swollen vent
- Females appear fat when they are gravid with eggs
- Both sexes have a laterally compressed tail

Immature Age Classes

- · Metamorphs
 - At metamorphosis
 - Muddy color patterns
 - Remnant gill stubs
 - 100-150 mm long
 - 4 6 inches
 - Fat
- Juveniles (after 1st summer)
 - Resemble adults, but smaller

Hybrids

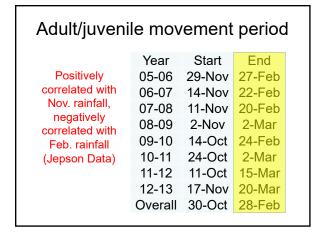
- · Genetic test needed for conclusive ID
 - Adults with barring are suspicious
 - Giant larvae are suspect also (CTS larvae usually <6" total length)

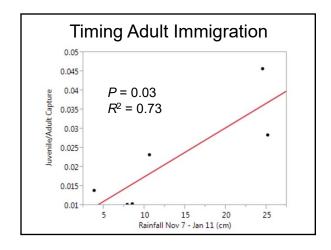


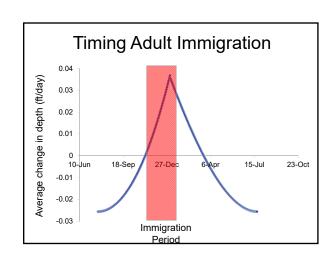
Identification - Main Points

- Embryos are distinctive and detectable
 - Single embryos alone or in clumps
- Larvae are easily differentiated from newt larvae by larger size and no eye stripe
- · Metamorphs have muddy/blotchy color
 - Often with remnants of gills/fins
- · Juveniles and adults
 - Black/brown ground with cream/yellow spots
 - Lack nasolabial groove, pointed toe tips
- · Hybrid/Natives?
 - Genetic test required for conclusive ID
 - Large size and odd color patterns suggest hybrid

Group Exercise 1 - Identification


- In a group of 3-4 discuss the different stages of A. californiense and how you would identify them.
- What other amphibians might you encounter in the same ponds?
 - What species could cause problems?
 - In what regions do these species occur?



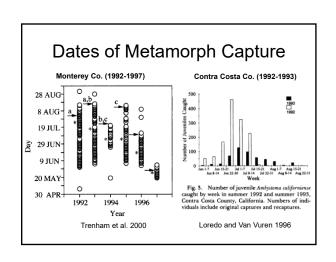

Adult/juvenile movement period Year Start End 05-06 27-Feb 29-Nov 06-07 14-Nov 22-Feb Positively 07-08 20-Feb 11-Nov correlated with 08-09 2-Nov 2-Mar date at which annual 09-10 14-Oct 24-Feb precipitation 10-11 24-Oct 2-Mar reaches 0.56 in. 11-12 11-Oct 15-Mar (Jepson Data) 12-13 17-Nov 20-Mar

Overall

30-Oct 28-Feb

Weather Patterns

- Even during migratory periods, CTS are active on the surface for a small fraction of the days.
- 2) Surface activity is driven by weather.


Out of a ~140 day activity season, 95% of the movement occurs on 15 days (11% of days) Out of a ~140 day Year Days 05-06 05-06 21 06-07 16 07-08 18 08-09 6
the movement occurs on 15 days (11% of days) 06-07 16 07-08 18 08-09 6
on 15 days (11% of days) 06-07 07-08 08-09 6
days) 07-08 18 08-09 6
08-09 6
00.40
09-10 11
10-11 23
11-12 14
12-13 13
Average 15.25

Correlations

- · Movement days are correlated with:
 - Precipitation (+)
 - High minimum temperature (+)
 - Humidity (+)
- However, amongst nights when rain is predicted (~32 per year), there is no clear rule for when CTS will be active

Metamorph emergence period Year Start End **Positively** 04-05 19-May 20-Jun correlated 05-06 30-May 10-Jul with Mar. 07-08 14-May 20-May rainfall 08-09 23-May 10-Jun (Jepson Data) 09-10 21-May 26-Jun 2-Jun 30-Jun 10-11 11-12 1-Jun 19-Jun 12-13 7-May 18-May Overall 17-May 3-Jul

Metamorph emergence period Year Start End 04-05 19-May 20-Jun Positively 05-06 30-May 10-Jul correlated 07-08 14-May 20-May with drying 23-May 10-Jun date of 08-09 breeding 09-10 21-May 26-Jun pond 10-11 2-Jun 30-Jun (Jepson 11-12 1-Jun 19-Jun Data) 12-13 7-May 18-May Overall 17-May 3-Jul

Conclusions – To Avoid Migrating Salamanders

Avoid activities that will impede salamander movement in the terrestrial environment:

- a) after the first ~0.5 inches of rain in the fall until mid-March
- b) from mid-May until the breeding ponds are dry

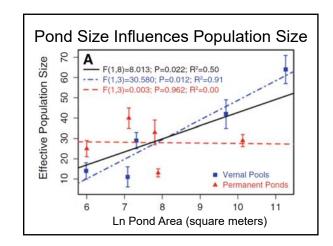
Breeding pond occupancy-larvae

	Year	Start	End
Positively	05-06	2-Dec	5-Jul
correlated	06-07	14-Nov	25-Feb
with first 0.82 in, after the	07-08	11-Nov	17-May
end of	08-09	2-Nov	9-Jun
October	09-10	12-Dec	25-Jun
(Jepson Data)	10-11	21-Nov	29-Jun
	11-12	15-Dec	18-Jun
	12-13	17-Nov	17-May
	Overall	11-Nov	29-Jun

Breeding pond occupancy - larvae

Year	Start	End	
05-06	2-Dec	5-Jul	
06-07	14-Nov	25-Feb	Desitivato
07-08	11-Nov	17-May	Positively correlated with
08-09	2-Nov	9-Jun	drying date of
09-10	12-Dec	25-Jun	breeding pond (Jepson Data)
10-11	21-Nov	29-Jun	(Jepson Data)
11-12	15-Dec	18-Jun	
12-13	17-Nov	17-May	
Overall	11-Nov	29-Jun	

Conclusions – Avoiding in Ponds


Avoid activities in the aquatic habitat:

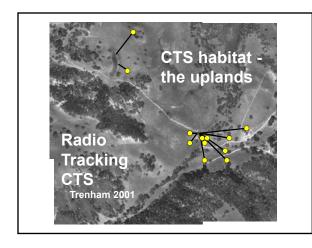
- -Once ~0.8 in. have accumulated after the end of October
- -Until the pond has dried for natural vernal pools or until late dry season for artificial ponds

Metamorph Activity At Jepson

91% of the	Year	Movement Days
movement days	04-05	35
are from just 4	05-06	48
of the 9 years,	06-07	0
which account	07-08	1
for 94% of the metamorphs	08-09	5
metamorphis	09-10	34
	10-11	30
	11-12	0
	12-13	8
	Average	17.88889

Relationship to Hydroperiod Average Average Date of Average Metamorph Breeding Number of Year Date Emergence Days in Pond 05-06 22-Dec 19-Jun 178 07-08 5-Jan 16-May 131 14-Feb 106 08-09 31-May 09-10 6-Jun 136 21-Jan 157 10-11 10-Jan 16-Jun 11-12 15-Mar 11-Jun 88 12-13 14-Dec 12-May 148

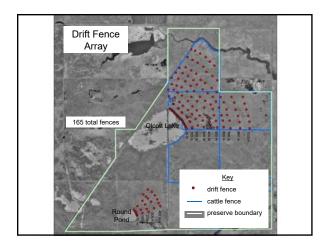
Aquatic Habitat – Important Issues


- Vernal pools and playa pools (CTS natural habitat)
 - Constructed ponds (more common today)
- Hydroperiod
 - Must persist into May (July or August, even better)
 - Permanent ponds often unsuitable due to predators
- · Pool area and depth
 - Bigger pools = more metamorphs
 - Deeper pools = >hydroperiod
- Vegetation? Water quality?
 - With or without vegetation
 - Often w/ livestock waste

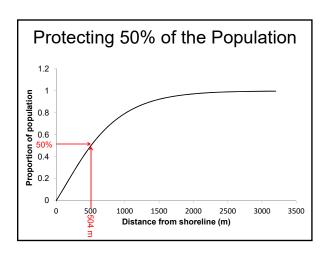
Aquatic Prey and Predators

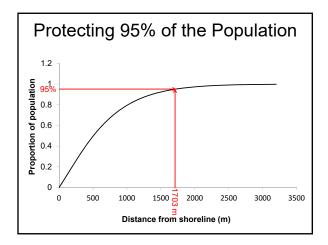
- Pre
 - Zooplankton (cladocera, copepods)
 - Macrocrustaceans (California clam shrimp, vernal pool tadpoles shrimp*)
 - Insect larvae (corixids, notonectids)
 - notonectids)Newt larvae
 - Pacific chorus frog tadpoles
 - Snails
 - *endangered prey

- Predators
 - AvocetsHerons
 - Terns
 - Garter snakesAdult newts
 - Bullfrogs*
 - Crayfish*
 - Fish*
 - Insect larvae (dytiscid beetles, giant water bugs)*
 - *a big problem with permanent ponds!


Landscape Habitat Points

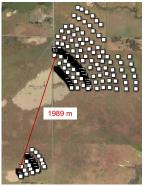
- Major upland habitats for burrows/migration
 - grassland
 - oak woodland
 - chaparral/sage scrub
- Most do not remain near edge of pond
 - ->1 km is not rare
- Movement between ponds 1 2 km estimated
 - 680 m observed ~800 m genetically estimated
 - introduced genes show large scale of movement over generations


FIBER-OPTIC VIDEO courtesy of Michael Van Hattem


Upland Habitat Main Points

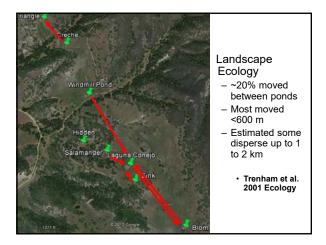
- After metamorphosis, CTS are almost always underground
- Occupy mainly ground squirrel and gopher burrows
 - Emerge to move to pond or another burrow
 - Emerge only at night, usually when raining
- · Aestivation has not been observed
- · Most do not remain near edge of pond

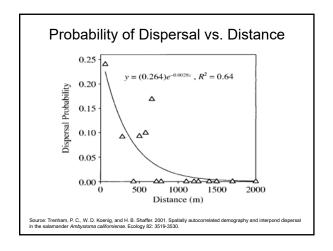
Pattern recognition

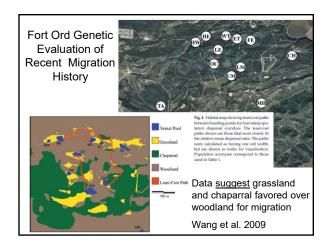

How far does the average salamander move in a season?

- Average rate = 150 m/night
- Most adults are active for 2 to 5 nights during both immigration and emigration
- (150 m/night)(3.5 nights) = 525 m
- This is pretty similar to the 504 m estimate from the integration method

How far can a salamander move in a season?


- We know that a rate of 188 m/night is sustainable for at least 6 nights in a row
- There are 10 to 19 nights with appropriate weather conditions during both immigration and emigration
- (188 m/night)(10 nights) = 1880 m
- Even in a dry year, a salamander should be capable of migrating 1703 m





Jepson Study - Conclusions

- · The two methods agree very well.
- The average adult probably travels ~500 meters from the pond – almost twice the distance of any of its congeners.
- There is no reason to doubt that the top 5% of migrants travel 1703 m or more from the pond edge.
- The 2092 m buffer currently used by USFWS is within the ecophysiological capacity of the salamander in most years and is within the 95% confidence interval of the integration method.

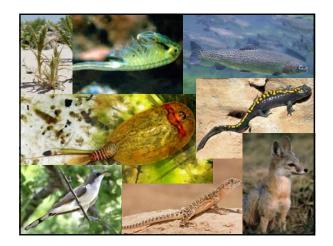
How many acres/hectares to protect 95% of CTS?

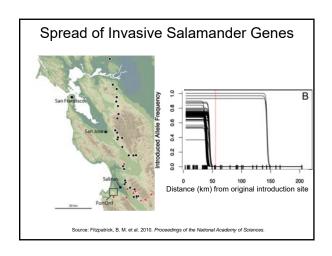
 About how many hectares/acres are encompassed by a pond buffered by 1.7 km?

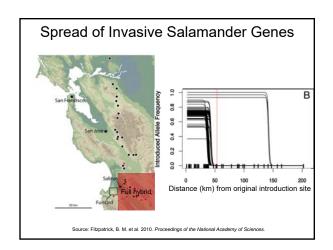
$$AREA = \Pi r^2$$

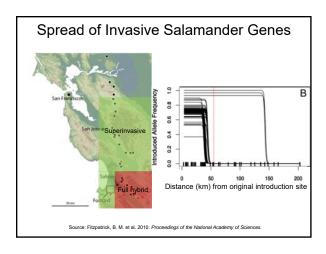
- r = 1,703 m
- hectare = 10,000 m²
- acre = 2.5 hectares

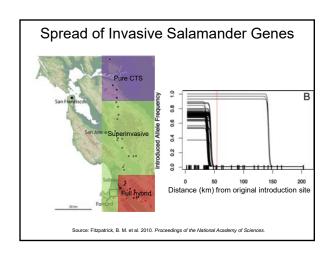
~9,000,000 m² = ~900 ha

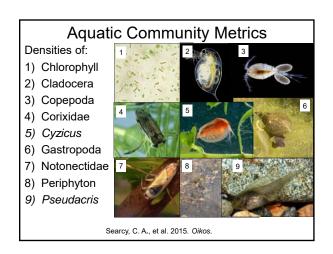

= ~2,300 acres

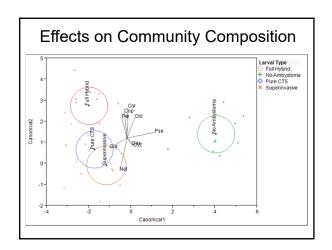

Group Exercise

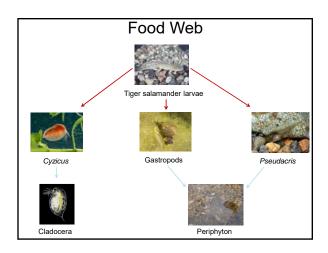

- You are responsible for designing habitat restoration for a failing vineyard in Sonoma County.
- The property is 500 acres and currently has no ponds, but CTS breed in ponds on a neighboring property.
- List at least 5 priority actions for restoring CTS to this site.

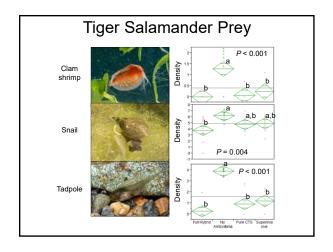

Multi-species conservation

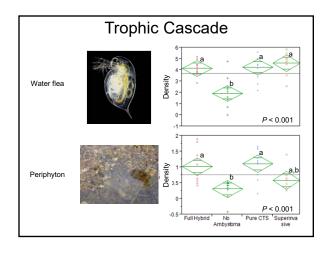

- Due to their large habitat requirements,
 California tiger salamanders can serve as an umbrella species for conservation of vernal pool grasslands in central California.
- Vernal pools are a bastion for rare California endemics; 89 other listed species also live within the 2092 m buffer around California tiger salamander breeding ponds.

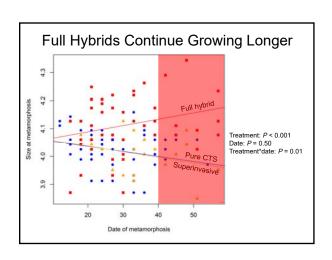


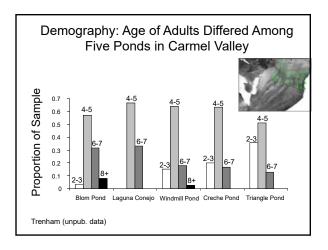


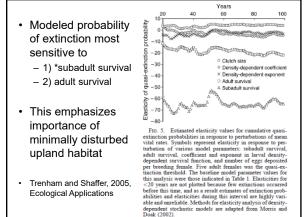


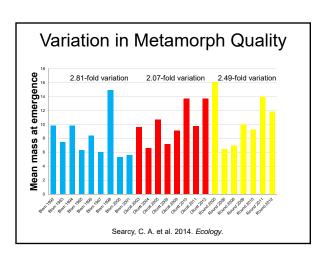

Testing Effects of CTS, Hybrids, and Superinvasives on Pond Communities

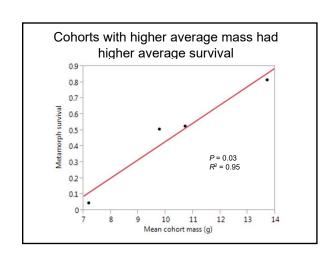

- · 4 x 2 factorial
- Treatments:
 - 4 salamander genotypes
 - 2 larval densities
- 5 replicates of each - 40 cattle tanks total

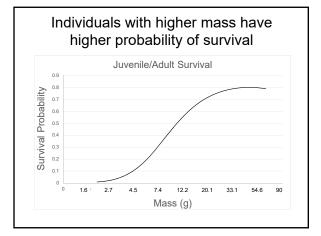





Conclusions on Hybridization


- 1) Superinvasives are ecologically most similar to pure CTS.
- Full hybrids are ecologically similar, but not equivalent, to pure CTS.
- 3) We could manage habitat by decreasing hydroperiods.


Modeling Population Extinction Risk


- Key demographic parameters:
 - -Age at maturity: 1-5+ years
 - -Fecundity: ~ 800 eggs per female
 - -Larval/embryonic survival: 0-10%
 - -Metamorph/Juvenile survival = ~50%
 - -Adult survival = ~70%

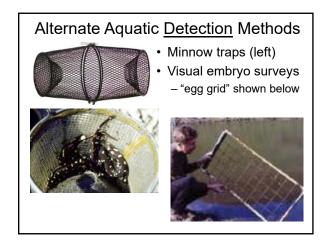
Demography of Average Pond															
Age (yr)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	Total
Mass (g)	8.7	8.0	13.2	17.7	21.1	23.4	24.8	25.7	26.3	26.6	26.8	26.9	27.0	27.0	
Fraction mature	0.00	0.00	0.06	0.65	0.91	0.97	0.98	0.99	0.99	0.99	0.99	0.99	0.99	0.99	
Survivorship	0.61	0.37	0.60	0.70	0.73	0.75	0.76	0.77	0.77	0.77	0.77	0.77	0.77	0.77	
Fertility	0	0	0	336	574	714	796	845	873	890	900	905	909	911	
Metamorphs	727	0	0	0	0	0	0	0	0	0	0	0	0	0	727
Juveniles	0	441	154	35	6	2	1	0	0	0	0	0	0	0	639
Adults	0	0	10	64	63	49	37	28	22	17	13	10	8	6	327
Individuals	727	441	164	99	69	51	38	29	22	17	13	10	8	6	1693
Eggs	0	0	0	4083	6864	6618	5628	4564	3618	2834	2205	1709	1322	1021	40466
Area = 1361 m ² Egg Density = 30/m ² Embryonic/larval survivorship = 0.018 Average age at maturity = 3.1 years															

Demography - Main Points

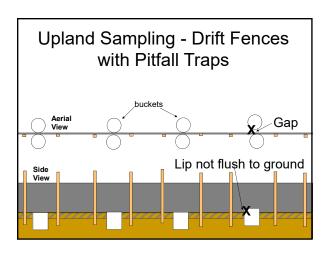
- Female CTS can produce large numbers of eggs
 - but most breeders are at least 3 yrs old
 - and they don't breed every year
- Survival probability is size dependent
- · Some individuals can live 10+ years
 - Most don't ever make it to metamorphosis
- Population size is much more sensitive to upland survival than to larval survival

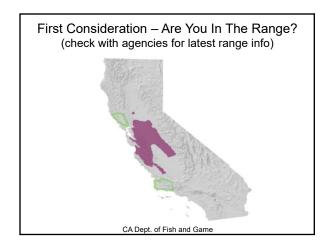
Conservation Strategies

- Protect occupied landscapes
 - Ideally >>1000 acre blocks; minimally 100 acres
 - With multiple breeding ponds
 - 5+ if possible
 - Some ponds should be larger
- Maintain/promote habitat connectivity
 - Minimize effects of new or improved roads
 - Maximize natural habitat between ponds
 - Construct additional ponds


Aquatic Habitat - Managing for CTS


- Modify/manage ponds to maintain appropriate hydroperiod
- · Eliminate predators by periodic drying
- Maintain existing berms/remove excessive siltation
- · Create additional ponds
- Allow livestock grazing (esp. vernal pools)


Upland Habitat-Managing for CTS


- Maintain habitat connectivity between ponds and uplands AND between ponds
- Maintain natural habitat, especially near breeding ponds
- Maintain burrowing mammal populations
- Effects of grazing unknown, but anecdotally positive

Sampling for CTS – CDFW/USFWS Guidance *requirements for a negative determination*

- 1) Site assessment assess upland and aquatic habitat onsite and within 2 km
- 2) If pond within 2km and upland habitat only...
 - Two seasons of drift fence sampling
 - ≥1 ft tall drift fence w/ pitfalls ≥ 90% site perimeter
 - Pitfall buckets <33 ft apart, ≥ 2 gallon buckets
 - Traps opened for rain events Oct. 15 Mar. 15
- 3) If potential breeding habitat on-site
 - 2 seasons aquatic sampling for CTS larvae
 - Sample >10 days apart in March, April and May
 - Sample using dipnets and seines (if none detected in dipnets)
 - One season drift fence sampling as above
 - With drift fences also around potential breeding habitat

USFWS/CDFG Reports

- Provide Complete Information
 - Dates and times sampled
 - Rainfall/temperature data for area during study period
 - Records of all animals captured
 - Photographs of representative specimens
 - Photographs of sampling apparatus
 - Records of all communications with USFWS
 - For aquatic sampling, calculations of the total effort expended/area covered each time

CTS Basics – Final Review

- · Aquatic Habitat just for breeding
 - Good ponds are temporary but dry only after May
 - Bigger, longer lasting ponds are better
- · Upland Habitat the rest of their lives
 - On land CTS occupy small mammal burrows
 - Many move hundreds of meters from ponds
 - Only return to ponds to breed (not even every year)
- · Landscape Considerations
 - More ponds = more security against local catastrophes
 - For connectivity, ponds should be 1-2 km or less apart
- · Weather/Rainfall
 - drives migrations and population dynamics