CALIFORNIA RED-LEGGED FROG WORKSHOP

Trish Tatarian, M.Sc. and Greg Tatarian

BIOGRAPHY Trish Tatarian

CRF Researcher - 14 years

- * CRF Radio-telemetry Sierran and Inland
- * Bd occurrence in Sierran CRF populations
- * Genetic composition of Sierran populations

Biological consultant - 24 years

BIOGRAPHY Greg Tatarian

CRF Research - 6 years

- * CRF Radio-telemetry
- * Bd occurrence in Sierran CRF populations
- Bat Specialist banding, telemetry, roosts, mitigation

Biological Consultant - 24 years

ACKNOWLEDGEMENTS

Norm Scott and Galen Rathbun
U. S. Fish and Wildlife Service
U.S. Forest Service
East Bay Regional Park District
East Bay Municipal Utility District
California Department of Transportation
U. S. Geological Survey
California State Parks

ACKNOWLEDGEMENTS

Elkhorn Slough Coastal Training Program Grey Hayes

> Elkhorn Ranch Pedro Rodriguez

San Francisco Bay National Estuarine Research Reserve

AND YOU - THE ATTENDEES!

TODAY'S SCHEDULE

0800-1200 Lecture

1200-1230 Lunch

1230-1430 Lecture & Demonstrations

1530-1800 Field Demonstrations

1830-2000 Dinner Break

2000-2400 Nighttime Instruction

ADDITIONAL INFORMATION

ELKHORNSLOUGHCTP.ORG

Bibliography Peer-reviewed papers

GOALS FOR THIS WORKSHOP?

- * Gain better understanding of CRF biology and ecology
- * Insights into management concerns, techniques and solutions
- ***** Learn how to conduct Site Assessments
- * All/most: learn how to conduct Protocol CRF Surveys
- * Some/few: obtain a U.S.F.W.S. individual research permit 10(A)1(a)
- * Improve field biology skills

MANAGING EXPECTATIONS

- * This workshop does not present ALL research and management of CRF
- Use the concepts, biological information, and specific examples to gain broader and deeper understanding, however;
- * Site-specific or project-specific questions by attendees are limited to available time, applicable experience of presenters
- * NOT a CEQA or NEPA permitting workshop, but we can offer experience and insights as consultants

KEEP IN MIND...

- *****Listed species no take of individuals
- ❖Manage on a site-by-site basis
- *Information presented here provides some tools for management of species
- *Variations in habitat use by bioregion determines each project analysis

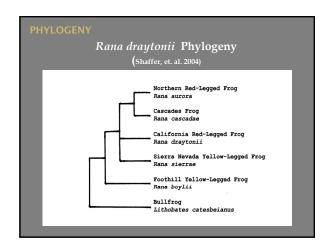
MAJOR DISCUSSIONS Part One

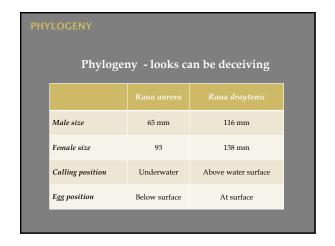
- · Taxonomy, Phylogeny
- Distribution
- Effects of Mediterranean Climate
- Biology
- · Population Data
- · Habitats

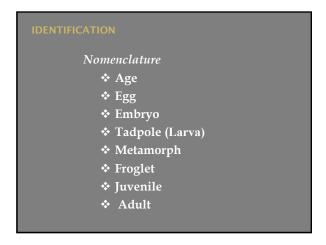
MAJOR DISCUSSIONS Part Two

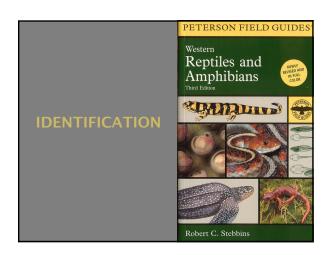
- Movements
- Population Biology
- **Extinction Sequence**
- ·Threats
- Management
- Regulatory

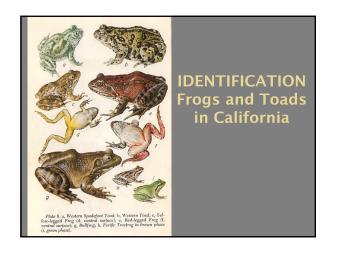
TAXONOMY PHYLOGENY IDENTIFICATION NOMENCLATURE


TAXONOMIC CHANGES


Sierran Treefrog Hyla regilla >> Pseudacris sierra

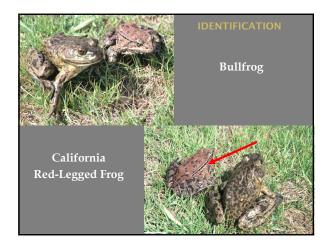

Western Toad
Bufo boreas >> Anaxyrus boreas


Bullfrog Rana catesbeiana >> Lithobates catesbeianus


California Red-legged Frog Rana aurora draytonii >> Rana draytonii

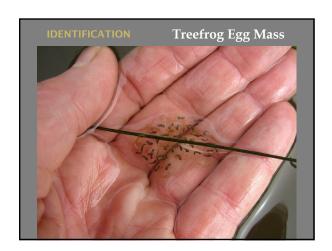
IDENTIFICATION AND DIFFERENTIATION

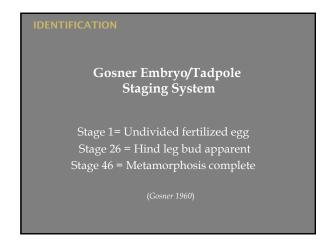
Critically Important for Protection of Individuals and Populations

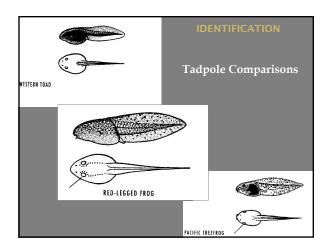

WHY?

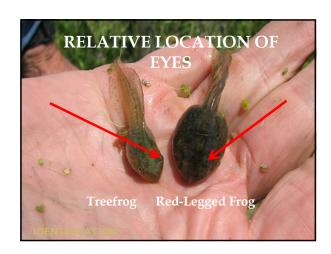


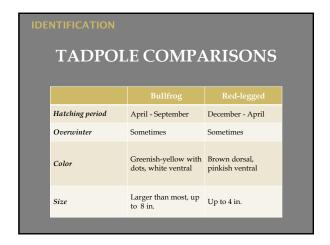
DIFFERENTIATING FEATURES Adults

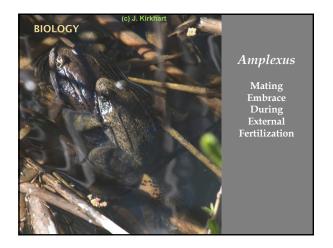

- Rana drautonii
- Lithobates catesbeianus
- * Rana boylii
- Pseudacris sierra



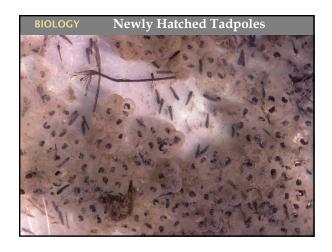


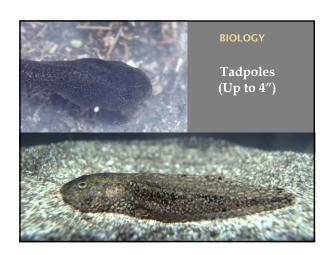


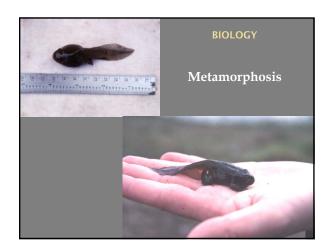




DIFFERENTIATING FEATURES Larvae Rana draytonii Lithobates catesbeianus Rana boylii Pseudacris sierra


CALIFORNIA RED-LEGGED FROG BIOLOGY





RIOLOGA

Physiology of Anurans

Majority of water loss is through the skin.

Reabsorption through the ventral pelvic region.

The larger the size the greater the distance travelled between aquatic sites.

Small amphibians have proportionately more surface area and, therefore, have higher rates of evaporative loss.

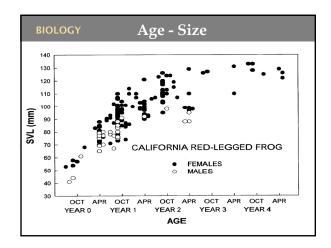
Duellman and Trueb 1994)

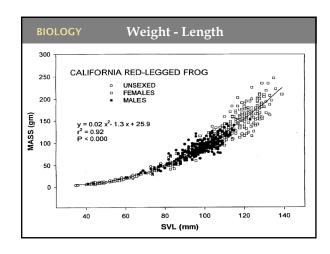
BIOLOG

Tadpole Food

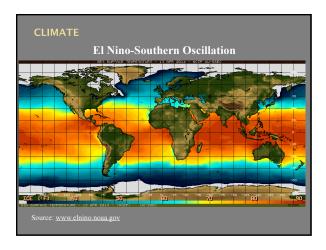
"Aufwuchs" (Slime!)
Algae, fungi
Microscopic animals
Carrion

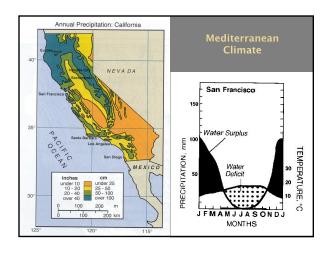
Frog Food

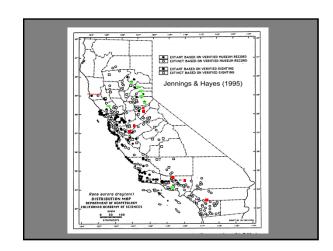

Arthropods
Molluscs
Annelid worms
Largest frogs eat fish, other frogs, mice

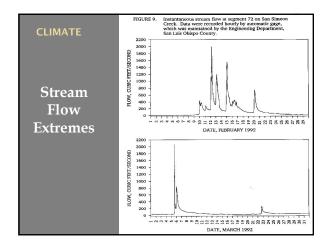

Terrestrial prey = 90% of total prey items (*Bishop 2011*)

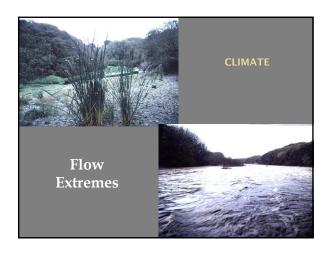
BIOLOGY

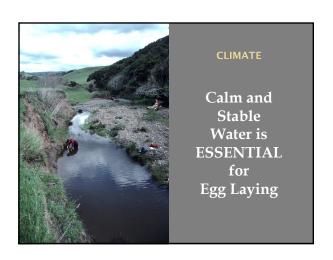

SIZE AND WEIGHT

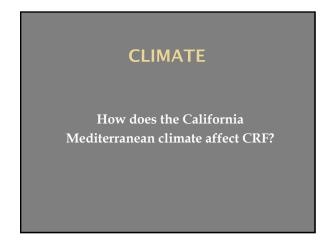

Sexual dimorphism

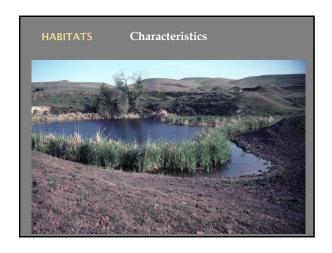










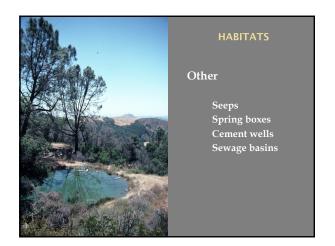


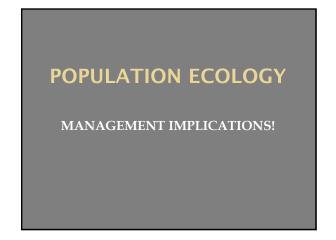
HABITATS 3 BIOREGIONS

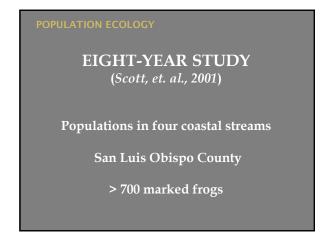
COASTAL – e.g., Marin, Santa Cruz, San Luis Obispo, Sonoma Counties

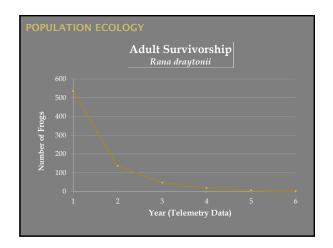
INLAND – e.g., Alameda, Contra Costa, Santa Clara Counties

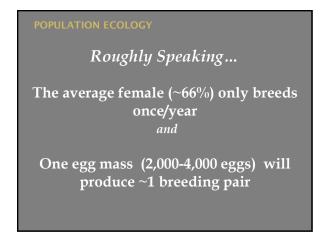
SIERRAN – e.g., Butte, Yuba, Plumas, Calaveras Counties

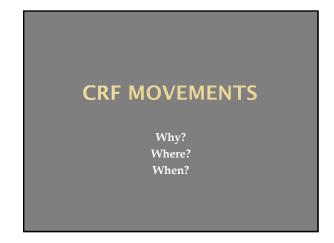


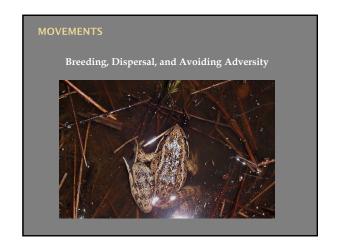






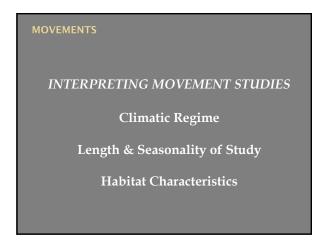




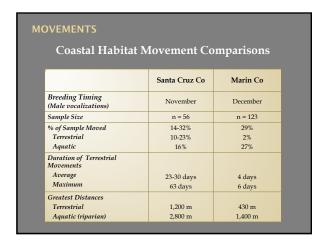

OPULATION ECOLOGY				
Survivorship				
Stage	Age (months)	Survival Rate	Number of Individuals	
Egg>>metamorph (assume 2,500/mass)	0-5	1-5%**	125	
Metamorph>> juvenile	5-12	10%	12.5	
Juvenile>>adult	12-24	25%	~ 3.12	
Adults	24-80	~33%/yr	1	

OUR RECOMMENDATION Manage for Tadpoles and Juveniles

MOVEMENTS

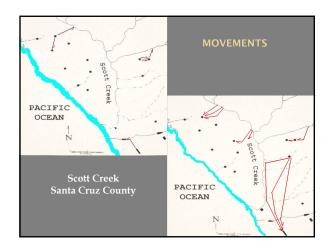

RESEARCH STUDIES

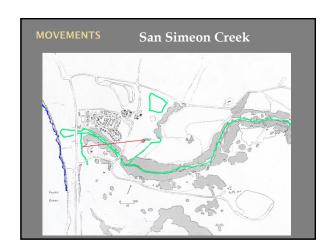
Scott and Rathbun (Observations 1993-1999) San Luis Obispo Co.


> Bulger, et al. (2003) Santa Cruz Co.

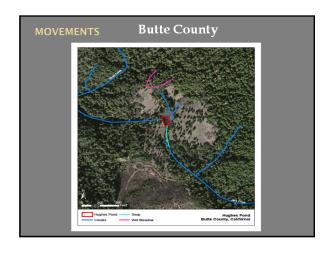
Fellers & Kleeman (2007) Marin Co.

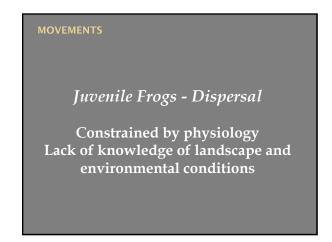
Tatarian (2008) Contra Costa Co. Butte Co. (Observations 2007- 2009)


Inland Habitat Movement Comparisons San Pablo Plumas Nat. Round Valley Watershed Forest Breeding Timing (Male vocalizations) December December February Sample Size n = 49 n = 22 n = 13 % of Sample Moved 42% 1% 100% Terrestrial 26.5% 18% Aquatic 24.4% 36% Duration of Terrestrial Movements Average 1-4 days 1-7 days Maximum 50 days Greatest Distances Terrestrial 91 m 215 m 10 m Aquatic


MOVEMENTS

Generalities

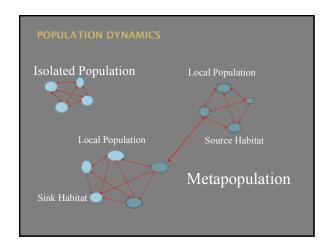

- * Most do not move far
- * Movement between aquatic habitats
- Escape adversity
- * Move in damp conditions (first rains)
- Move at night
- * Rarely use corridors



Studies of Adult CRF Movements

- * Name 3 regions of studies
- * Were movements alike in all regions?
- * Why or why not?
- * What are some appropriate generalities of CRF movements?

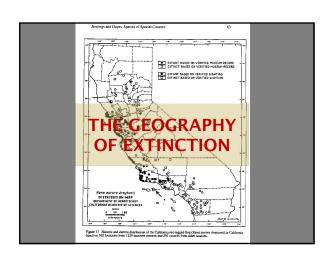
POPULATION DYNAMICS


POPULATION DYNAMICS

Terminology

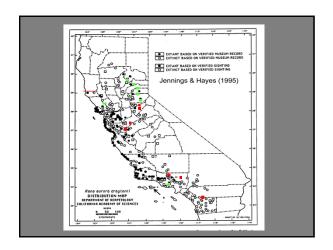
LOCAL POPULATION - Frogs in habitats linked by the regular exchange of individuals

METAPOPULATION - Two or more local populations rarely linked by migrating individuals


ISOLATED POPULATION - A local population not exchanging individuals with any other local population

POPULATION DYNAMICS

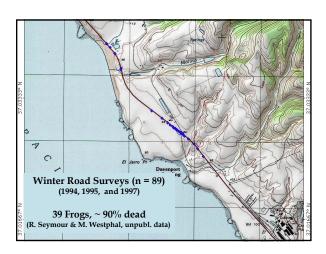
European Pool Frog (Rana lessonae)


- * 155 permanent ponds in Sweden
- * 60 local frog populations
- * All 24 ponds >4 km from another population had no frogs
- * 70% of ponds <1 km from another population had frogs
- 33% of ponds 1-4 km from another had frogs (Sjögren 1991)

POPULATION DYNAMICS

Extinction Sequence

- 1. Metapopulation linkages are broken, creating isolated local populations
- 2. Local populations lose mosaic of local habitats
- 3. Local populations go extinct


POPULATION DYNAMICS

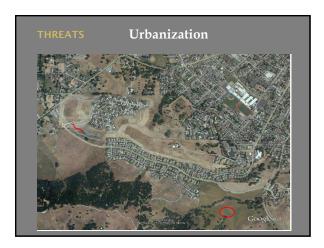
"Isolated populations will not persist without management."

(Hanski and Gilpin 1997)

THREATS

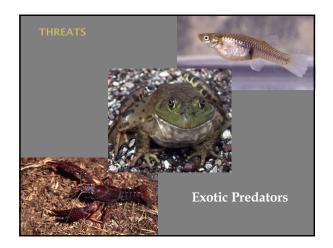
Roadways - Barriers and Mortality

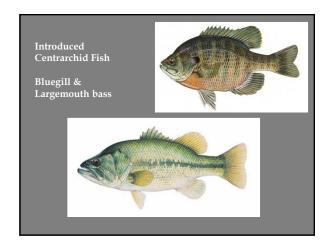
Canadian study (*Carr and Fahrig 2001*): Significant negative effect on leopard frog (*Lithobates pipiens*) abundance due to vehicular traffic density within 1.5 km radius of pond (i.e., greater impact because of increased traffic density).


German study (*Andrews and Jochimsen 2007*) - Zero to 50% survival rate of toads (*Bufo bufo*) crossing roads with traffic densities of 24-40 cars per hour.

THREATS

Urban Impacts


- **❖** Loss/Modification of Wetlands
- **❖** Loss of Terrestrial Habitats
- ***** Loss of Habitat Connectivity
- Toxins pesticides, pharmaceuticals, heavy metals



Agricultural Chemicals

www.epa.gov/espp/litstatus/
effects/redleg-frog/

Emerging Diseases

Batrachochytrium dendrobatidis genome sequenced and even most recently evolved clade contained more genetic variation than previously reported. Important to consider Bd in broader evolutionary context and identify mechanisms that led to shift in virulence.

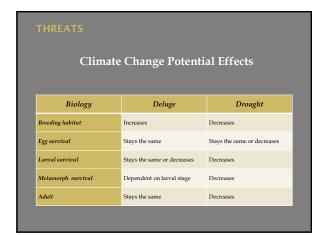
(Rosenblum, et al. 2013)

THREATS

Emerging Diseases

Ranavirus – Highly infective to a range of animals and detected in frogs and salamanders , U.K., U.S.A and Canada

(Dazak, et al., 2003)

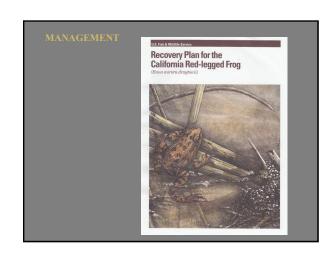

THREATS

Climate Change

- * Decrease in cold days and nights and frost
- occurrences

 * Increase in hot days and nights
- Increase in heat waves
- * Stronger storm events
- Wildfires
- * Emerging pathogens and invasive species

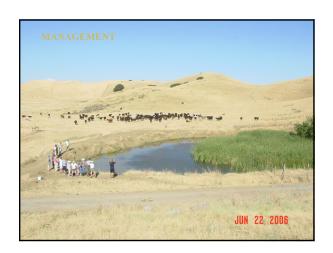
(Intergovernmental Panel on Climate Change (IPCC) Synthesis Report 2013)



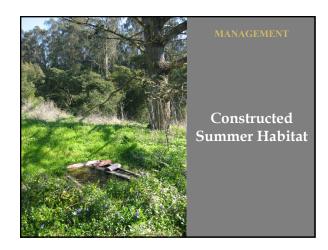
MANAGEMENT

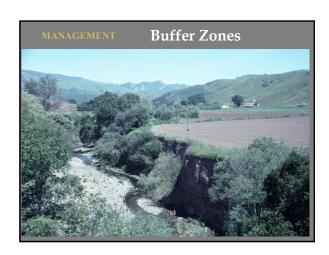
Management Tools

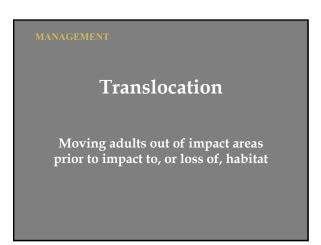
- * Control of exotic predators
- * Pond construction
- * Vegetation and silt removal
- * Buffer zones
- * Translocation
- * Population re-establishment



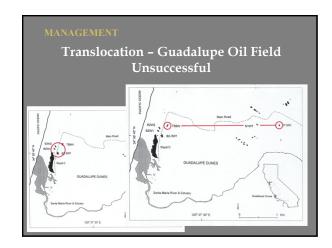
Use of Stock Ponds to Manage CRF Populations (Caution: rarely maintenance free) Manage for soil accretion/aquatic biomass accumulation, even with weirs for water control Prevent individual loss









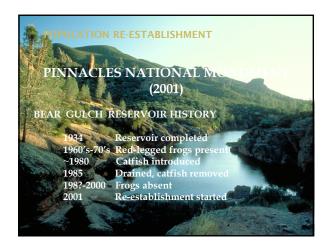

MANAGEMENT

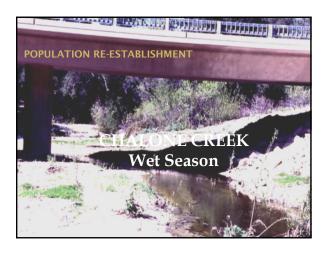
Translocation

- * Success dependent on many factors not appropriate for all projects
- * Requires USFWS concurrence

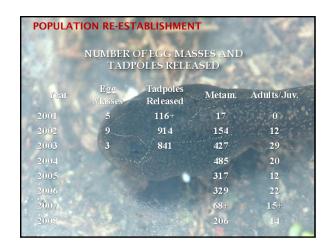
MANAGEMENT

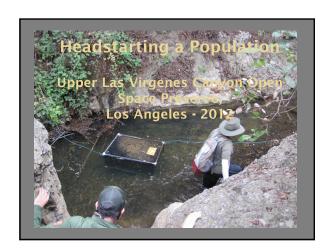
Headstarting


(Population reestablishment)


Moving egg masses from a selfsustaining, stable population, to a different location to establish a new population

MANAGEMENT


Headstarting


- * Success dependent on many factors not appropriate for all projects
- * Requires USFWS concurrence

Chalone Creek Headstarting Program Collection - 20% of egg masses from Chalone Creek Headstart - held tadpoles in mesh boxes in reservoir Release - placed tadpoles into reservoir

RECAP

Management Tools

WHAT WE'VE COVERED **BIOLOGICAL FACTORS**

- Habitat types used by frogs
- Population dynamics
- Population-level management
- Clear objectives for species management

REGULATORY PROCESS

REPORTING (Consider impacts: temp. vs. perm., indiv. vs. pop.)

- **❖ Site Assessment** (USFWS 2005)
- * Habitat Assessment
- * Biological Assessment
- Habitat Conservation Plan

PERMITTING

- Project Permits:

 ❖ Section 7 federal nexus

 ❖ Section 10 no federal nexus

Research Permit:

- ❖ 10(A)(1)(a) Permit issued to Individual Note: Individual Permit is NOT required for:

 Site Assessment
 Focused surveys for adults
 Construction monitoring

PERMITTING

Individual 10(A)(1)(a) Permit IS required for capture/handling

Entire pond must be dip-netted to prevent a false negative of occurrence in a pond

INDIVIDUAL 10(A)1(A) PERMIT

Minimum requirements to obtain a permit:

See: Revised Guidance on Site Assessments and Field Surveys for the California Red-legged Frog (USFWS 2005)

Minimum requirements for Service-approval

REGULATORY

SITE ASSESSMENT AND FOCUSED SURVEYS

Results are valid for two (2) years, unless the following has occurred:

- Appropriate Service Fish and Wildlife Office was not contacted to review the results of the site assessment prior to field surveys being conducted;
- Field surveys were conducted in a manner inconsistent with the Guidance or with survey methods not previously approved by the Service;
- Field surveys were incomplete;
- Surveyors were not adequately qualified to conduct the surveys;
- Reporting requirements, including submission of CNDDB forms, were not fulfilled.

REGULATORY

SITE ASSESSMENT

- Is the site within the current or historic range of the CRF?
- 2. Are there known records of CRF at the site or within a 1.6-km (1-mi) radius of the site?
- 3. What are the habitats within the project site and within 1.6 km (1-mi) of the project boundary?

REGULATORY

SITE ASSESSMENT

Site Evaluation:

- Ponds size, max. depth, vegetation components, substrates, hydrologic duration
- Streams bank full width, max. depth, stream gradient, pools present, depth of pools, characteristics of non-pool habitat, vegetation components, substrate, bydrologic cycle, bydrologic connectivity

REGULATORY

PROTOCOL SURVEYS

	Surveys		
	Diurnal	Nocturnal	
Non-breeding	1	1	
Breeding	2	4	
Intervals (min.)	7 days	7 days	

Decontamination guidelines must be used between each separate hydrologic site for all equipment.
(USFWS 2005)

REGULATORY

PROTOCOL SURVEYS

- Stop, listen
- Visual scan (Visual Encounter Survey)
- ❖ Day survey
- ❖ Night survey
- Lights and binoculars

REGULATORY

SURVEY EQUIPMENT

MOST SURVEYS:

Decontamination supplie
Chest waders
Headlamps and Lights
Binoculars
Dip nets (permit required)

SPECIAL CIRCUMSTANCES:

Float tubes or boat