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Research Article

Factors Affecting Detection Probability of
Burrowing Owls in Southwest Agroecosystem
Environments

JEFFREY A. MANNING,1 Fish and Wildlife Resources, College of Natural Resources 107, University of Idaho, Moscow, ID 83844-1136, USA

ABSTRACT Estimating range-wide population trends of western burrowing owls (Athene cunicularia)
requires standardized survey protocols that correct for detection bias in environments that support large
owl populations. High concentrations of owls exist in irrigated agroecosystems within the southwest United
States, yet little is known about the factors that affect detection bias during owl surveys in these systems.
I used closed-population capture-recapture models to evaluate 4 factors that could affect the probability of a
surveyor detecting an owl activity center (i.e., nest burrow) during visual surveys where owls are the focal
object and analyzed the relationship (linear or curvilinear) between specific factors and detection probability.
I recorded 1,199 detections of owls from 132 capture-recapture surveys within 12 sites of the Imperial Valley
agroecosystem in California, USA between 16 April and 20 May 2006. I also conducted 96 time budget
surveys throughout the day and usedmixed linear models to evaluate the effect of each factor on probability of
an owl activity center being available for detection (i.e., �1 owls above ground) during surveys. Model
selection results indicated that detection probability was influenced by ambient air temperature interacting
with wind speed. Detection probability followed a curvilinear relationship that resembled bell-shaped curve
along a temperature gradient, with the maximum detection probability shifting as a function of wind speed.
At low temperatures, detection probability declined with increased wind speed, but this relationship was
reversed at high temperatures, producing a 3-dimensional pattern in detection probability characterized by a
saddle-shaped hyperbolic paraboloid response surface. The probability of an activity center being available for
detection declined curvilinearly with increased temperature and explained 51% of the variation in detection
probability. Given the broad range of detection probabilities, correcting visual survey counts for detection bias
is necessary for comparing population estimates among regions and through time. Survey designs intended to
estimate abundance of owls in southwest agroecosystems should incorporate methods to estimate and correct
for variation in detection probability that include measurements of ambient temperature and wind speed for
use as covariates. � 2011 The Wildlife Society.

KEY WORDS agroecosystem, activity center, Athene cunicularia, availability for detection, burrowing owl, detection
probability, monitoring, population estimation, survey methods.

Populations of the western burrowing owl (Athene cunicu-
laria) have declined or disappeared at the northern edge of
the species’ breeding range in southern Canada and northern
United States, whereas populations in the southern portion
of their range (southwestern U.S. and northwestern Mexico)
have increased and support some of the highest breeding
densities recorded (James and Espie 1997, Wellicome and
Holroyd 2001, Klute et al. 2003, Desante et al. 2004, Sauer
et al. 2008). These diverging population trends may be linked
to different human land uses, owls appear to be increasing in
irrigated agriculture but declining in natural landscapes
(Moulton et al. 2006). A range-wide survey protocol has
been recommended to estimate population trends across all
habitats (James and Espie 1997, Holroyd et al. 2001,
Conway and Simon 2003). The accuracy and efficiency of

a range-wide survey protocol for estimating population
trends depends on a survey design that accounts and corrects
for factors that influence detection probability differentially
among habitats (Anderson 2007). Identifying sources of
variation where large concentrations of owls occur is espe-
cially important for detecting range-wide population trends
because the accuracy of population estimates in high-abun-
dance areas can have a profound affect on the accuracy of
total population estimates (Caughley 1977, Cochran 1977).
Accurate models of the relationships between environmental
factors and detection probability can be integrated into an
efficient range-wide survey protocol by modifying existing
protocols to account for relationships specific to agricultural
habitats.
The development of sampling protocols and analytical

methods that account for variation in detection probability
is a focus of research in population ecology (Otis et al. 1978,
Pollock and Kendall 1987, Kery and Schmid 2004). Some
methods correct for known sources of variation in detection
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probability, such as group size and vegetation cover, distance
from observer, and propensity to call (Royle et al. 2004,
Diefenbach et al. 2007, Pearse et al. 2008). Other methods,
such as double-survey methods and mark–recapture, directly
estimate and correct for detection bias attributed to a wide
range of sources, as long as the appropriate predictors are
measured and the correct relationship (e.g., linear, asymp-
totic, or curvilinear) is applied (Lebreton et al. 1992, Nichols
et al. 2000).
Sources of variation in detection probability during avian

surveys are numerous and include bird behavior, habitat
characteristics, and weather (Thompson 2002, Anderson
2007). Early studies of burrowing owls found that owls
were not readily available for detection during midday visual
surveys because they retreated into their burrows (Coulombe
1971, Thomsen 1971). Others have reported that male and
female adult owls differ in the time spent in the burrow
throughout the day during the breeding and non-breeding
seasons (Plumpton and Lutz 1993, LaFever et al. 2008).
Weather conditions can affect owl behavior and reduce
detection probability in southern Alberta, Canada, and de-
tection probability during auditory surveys in the Mojave
Desert is affected by probabilities of owl availability and
detection (Haug and Didiuk 1993, Shyry et al. 2001,
Crowe and Longshore 2010). Several studies have also pro-
vided estimates of detection probability in irrigated agricul-
tural areas (e.g., Coulombe 1971, Rosenberg and Haley
2004), although factors affecting detection probability in
these systems have not been investigated. Conway et al.
(2008) completed the most comprehensive study on factors
that affect detection probabilities of burrowing owl nest
burrows in various land uses, including irrigated agriculture,
in northern portions of the owl’s range (Washington and
Wyoming) and found that detection probability depended
on linear interactions between timing within the breeding
cycle and time of day, study area and percent cloud cover,
time of day and ambient temperature, and temperature and
wind speed. These studies have proven valuable in demon-
strating that detection probability varies across the owl’s
range and that environmental conditions influence detection
probability. However, an effective and accurate range-wide
survey protocol also requires information on factors influ-
encing detection probability of burrowing owls in southwest
agricultural areas. My objective was to identify sources of
variation and their relationships with detection probability of
burrowing owl activity centers in southwest agroecosystem
habitats that support a high density of owls.

STUDY AREA

The study area was the 337,000-ha agroecosystem in the
Imperial Valley of California, USA (328580N, 1158310W), an
important region for burrowing owls that supports one of the
highest densities of owls in North America (Coulombe 1971,
Desante et al. 2004, Sauer et al. 2008). Extensive landscape
change occurred in this desert ecosystem during the early
20th century, when a large portion of the valley became
cultivated for agricultural production with irrigation water
supplied by the Colorado River (Bailey 1994). The primary

land use was irrigated cropland but also included urban,
suburban, industrial, pasture, abandoned fields, and roadside
embankment. Remnant patches of wetland, desert dry wash,
and riparian woodland vegetation communities were also
present. During this study, fields that were in agricultural
production were intensively managed year-round, with
alfalfa, Sudan grass, Bermuda grass, and wheat as the domi-
nant crops (Falkowski and Manning, in press). Burrowing
owls nested almost entirely within or along irrigation ditches
that were either concrete-lined water-delivery canals or
earthen irrigation drains that spanned the margins of
agricultural fields and paralleled dirt maintenance roads.
Average elevation was 40 m below sea level and average
annual precipitation was <3.0 cm. Average annual low
and high temperatures were �15.68 C and 51.18 C, respec-
tively, and average low and high temperatures during the
study period were 14.98 C and 32.28 C, respectively
(Western Regional Climate Center 2010).

METHODS

Detection Probabilities
Although burrowing owls in this landscape tend to perch in
visible areas, nest burrows are usually located along the slope
of irrigation ditches and can be difficult to see from access
roads. Additionally, classifying the status of unoccupied and
occupied burrows is not without error (Garcia and Conway
2009). Thus, I used visual observations of owls as the basis for
detecting nest burrows, as others have (Conway et al. 2008,
Crowe and Longshore 2010, Manning and Goldberg 2010).
I recorded point-coordinate capture-recapture (PCCR) loca-
tions of owls obtained during visual surveys of owls, consid-
ered nest burrows associated with owl locations as individual
burrowing owl activity centers, and used owl locations to
calculate detection probabilities of activity centers with
capture-recapture models, following methods described by
Manning and Goldberg (2010). The PCCR method is well
suited for estimating detection probabilities of activity
centers from owl locations because it uses the spatial coor-
dinates from detected unmarked owls to construct encounter
histories associated with activity centers.
I conducted point-coordinate capture-recapture surveys in

12 randomly selected linear nesting sites (each approx. 6 km)
between 16 April and 20 May 2006. I used ArcGIS 9.2
(ESRI, Redlands, CA) to randomly choose replicate nesting
sites from a vector layer of all possible 6-km segments of
irrigation drains and canals (5,385 km) maintained by the
Imperial Irrigation District (Imperial, CA) in the study area.
I arbitrarily chose the starting point of each segment. All of
the randomly chosen segments were occupied by burrowing
owls, and I later reduced 2 segments by 0.3 km at a terminal
point due to restricted access. Although I did not collect data
to determine breeding status of occupied burrows, it was
most likely the early part of the breeding cycle because
others have reported first egg-laying as early as 7 April,
average clutch completion dates on 29 April and 14 May,
and average date of newly hatched young on 16 May in this
system (Coulombe 1971, Rosenberg and Haley 2004).
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Additionally, no nestlings were observed above ground dur-
ing this study until 19 May (J. A. Manning, University of
Idaho, personal observation).
Observers conducted point-coordinate capture-recapture

surveys using the single vehicle stop method with 2
surveyors, as described by Manning and Kaler (2011). I
used the same make and model vehicle for all surveys.
Observers completed 11 separate 1-hr PCCR survey
occasions throughout the day at each site, one for each
hour between 0630 hour and 1830 hour, except for 1230–
1330 hours. One observer and one driver surveyed from a
vehicle that traveled 11 km/hr in the same direction along
the dirt maintenance road closest to the irrigation ditch. The
time required for a vehicle to travel the entire length of a
survey site varied from 33 min to 45 min, depending on
the number of owls encountered. After traversing the
entire length of a site, observations paused for �15 min
to complete the 1-hr survey occasion and drive along an
alternate route back to the initial start point. All 11 1-hr
survey occasions were conducted by the same observer
and driver at a site. To reduce problems with increased
detection over the 11 consecutive occasions due to repeated
surveys by the same surveyors, I did not mark owls or
locations of owls, and I trained observers and drivers to focus
on detecting owls during each occasion rather than landscape
features such as nest burrows. Drivers also alerted observers
of any owls they observed that were not detected by the
observer. Drivers based the direction of travel at each site
on positioning the observer side of the survey vehicle closest
to the irrigation ditch. To reduce double counting owl
activity centers, the driver and observer maintained a field
of view in the direction of travel, noted where owls that
flushed resumed perching, and did not look behind the
vehicle.
At every detected owl, surveyors exited the vehicle and used

a Trimble GeoXM (Trimble Navigation Limited,
Westminster, CO)Global Positioning System (GPS) receiv-
er, laser range finder, and magnetic compass with sighting
mirror to record the owl’s perch location or its burrow if the
owl was<20 m from an active burrow. I considered a burrow
active if an owl retreated into or flushed from it or if the
entrance contained regurgitated pellets, feathers, nest lining,
whitewash, or footprints without cobwebs (Conway et al.
2008). I excluded locations of owls observed only flying
(n ¼ 2). If an owl was first observed flying and then landed,
I recorded the landing site as the perch. To further avoid
double counting activity centers during the same PCCR
survey occasion, I considered owls <20 m apart to be a
nesting pair and recorded them as a single observation (fol-
lowing Manning and Goldberg 2010).
I used the 11 PCCR survey occasions to construct PCCR

encounter histories with the maximum likelihood estimate
of the maximum distance moved (58 m) reported by
Manning and Goldberg (2010). This estimate of maximum
distance moved was appropriate for constructing PCCR
encounter histories because the estimate was derived
from data collected in this study area during the same
time of year. Additional details on applying the PCCR

method to owls in this system are provided by Manning
and Goldberg (2010).
Six different observers conducted PCCR surveys. The

influence of vehicle-based surveys on burrowing owl behav-
iors when 2 observers exit a vehicle is the topic of a previous
study (Manning and Kaler 2011). I assumed that variation
among observers in detecting owls was negligible because
observers received the same level of standardized field train-
ing (40 hr).
I examined the extent to which the following 4 factors

influenced detection probability of burrowing owl activity
centers: survey segment, time of day, wind speed, and ambi-
ent temperature. I included study site because sites differed in
the type and physiognomic stage of crops; above-ground
structures that were available to owls for perching such as
shrubs, boulders, posts, debris piles, machinery, hay bales,
water conveyance structures, and utility poles; and abundance
of owls. I assumed that detection probability did not vary
within each PCCR survey occasion and used discrete vari-
ables by classifying each occasion into one of 11 periods of
day. Periods were every hour, starting at 0630 hours, ending
at 1829 hours, and skipping 1230–1329 hours. I included
the 2 weather variables because wind and temperature have
been shown to influence the detection of burrowing owls in
the northwest (Conway et al. 2008). I recorded percent cloud
cover and precipitation (present, absent) during each PCCR
survey, but I excluded them from analyses because both were
nearly non-existent in 98% (3 of 132) of surveys. I recorded
ambient air temperature (8 C) and wind speed (km/hr) at
each site repeatedly during each PCCR survey occasion with
a Kestrel 3000 Pocket Weather Monitor (Nielsen-
Kellerman, Boothwyn, PA) and used it to compute site-
specific hourly averages of each variable throughout the day.
To estimate detection probability (pd), I fit closed-popula-

tion models available in Program MARK to the PCCR
encounter histories (White and Burnham 1999, Manning
and Goldberg 2010). I used the PCCR encounter histories as
a closed capture data type, applied a multinomial logit link
function, and fit models that assumed recapture probability
would not differ from initial capture probability (i.e., c ¼ p)
because I could not envision a situation in which my sam-
pling activity would affect probability of subsequent capture
(i.e., I did not include a behavioral response to initial cap-
ture). My candidate set of models included all possible
additive and 2-way interactions, except I did not include
variables that were highly correlated (r < 0.6) in the same
model. I included time as a second-degree quadratic function
to represent a curvilinear relationship with detection proba-
bility because detections have been reported to decline during
midday in this region (Coulombe 1971). I also modeled
time as a linear trend to test whether prior knowledge
of owl locations by surveyors at a site influenced
subsequent detection probabilities. I modeled the relation-
ship between detection probability and temperature as both
linear and second-degree quadratic because bell-shaped
curves typically represent organism responses to environ-
mental continua (Morrison et al. 1998); I postulated detec-
tion probability would follow a bell-shaped pattern because
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high temperatures in my study area may stabilize or reduce
detections during peak temperatures if owls use their burrows
to minimize heat stress (Morrison et al. 1998). I ranked
models using second-order Akaike’s Information Criterion
corrected for small sample sizes (AICc) and used Akaike
weights w to assess the relative importance (weight of evi-
dence) of each model (Akaike 1973, Burnham and Anderson
2002). I used a plot of deviance residuals to heuristically
assess the fit of my global model and tested for overdispersion
by calculating a variance inflation factor ðĉÞ generated from
1,000 bootstrap simulations with the median ĉ procedure
(Cooch and White 2007). To assess generality of the best
model, I subset the data according to 4 categories based on
aspect of slopes (north–south or east–west) and type (earthen
drain and cement-lined canal or only earthen drain) of
irrigation ditch that was present at each site, which has
been shown to influence presence of nesting burrowing
owls in this system (Bartok and Conway 2010), and I refit
the closed-population models.

Availability for Detection

To estimate probabilities of a burrowing owl activity center
being available for detection (pa), I conducted time budget
surveys at one randomly selected occupied burrow in each
study site to determine the proportion of time (min/hr) �1
owls were above ground. Following a repeated measures
design, observers continuously observed each burrow
throughout a day from 0630 hours to 1930 hours, except
between 1230 hours and 1330 hours. Observers completed
surveys between 7May and 17May 2006 and within 2 weeks
of a detection survey at a site. I used an instantaneous, focal-
animal sampling approach to record the start and stop times
when �1 owls were above ground (Altmann 1974). I
recorded the same weather variables as those measured dur-
ing PCCR detection surveys during each hour of a time
budget survey.
Observers conducted observations with binoculars and a

spotting scope from vehicles parked at a distance believed to
not disturb owls in this agroecosystem (approx. 160 m;
Coulombe 1971). Drivers positioned vehicles close to the
edge of the slope above the irrigation ditch to maximize
visibility along its length. If an owl flew out of sight, the
observer continuously scanned the area and focused attention
back to the vicinity of the burrow (or burrow complex) to
determine when the owl retreated into its burrow; I consid-
ered an owl available for detection until the owl retreated into
the burrow. If both owls flew out of sight, the observer
recorded when each owl returned and retreated into the
burrow. The flat agricultural landscape enabled us to main-
tain sight of most owls or detect them upon returning from
far distances before they re-entered burrows.
Observers arrived at each observation location 15 min prior

to starting observations to locate target owls prior to data
recording. If no owls were detected by the start of a time
budget survey, the observer continuously scanned the general
vicinity of the burrow and surrounding area to determine if
an owl was already above ground at the start of the survey.
Observers did not detect 4 of the 12 owls prior to starting the

survey, preventing me from verifying whether they were
above or below ground at the start of the survey; I excluded
those owls from analyses.
I considered the proportion of time �1 owls were available

for detection during each 1-hr interval throughout a time
budget survey as a multivariate response under different
conditions (i.e., different time of day, wind speed, and tem-
perature), and I fit linear mixed effects models to the repeated
measurements of the proportion of time (n ¼ 96; 8 activity
centers � 12 hr). I considered individual activity centers as
random effects and applied an arcsine square-root transfor-
mation to the proportions (Lindstrom and Bates 1990,
Ramsey and Schafer 2002). This process assumed that varia-
tion among the sample of activity centers was random during
each 1-hr time interval, such that the effect of each activity
center was randomly selected from the wider owl population,
which parallels the benefits of a randomized block design
(Ramsey and Schafer 2002). I constructed all possible addi-
tive and 2-way interactions. However, I did not include time
of day and temperature in the same model because these were
strongly correlated. I used AICc andw to determine the most
parsimonious model and pseudo r2 to measure the amount of
deviance in proportion of time available that was explained by
each mixed model (McFadden 1973, Dobson 2002).
To assess how much variation in detection probability was

attributed to the probability of a burrowing owl activity
center being available for detection, I used the detection
probabilities I estimated from each 1-hr PCCR survey oc-
casion at each site with the best capture-recapture detection
model as a response variable in a simple linear regression
model where the corresponding probability of being available
predicted from the best availability model was the explana-
tory variable. I restricted this analysis to data (n ¼ 84) from
PCCR surveys where temperature was 20–418 C and wind
speed was <9.6 km/hr to reflect the conditions during time
budget surveys. I did not include site as a random effect
because I wanted to estimate the amount of variation in
detection that was explained by availability across all sites
(i.e., a reliable r2-value). I computed statistics using the nlme
package in R (Bolker 2008; nmle Version 3.1–89, http://
cran.r-project.org/web/packages/nlme/index.html, accessed
31 Mar 2008; R Version 2.11.1, www.r-project.org, accessed
31 Mar 2008).

RESULTS

I recorded 1,199 burrowing owl detections during 132
PCCR surveys in 12 replicate sites between 16 April and
20 May 2006, and used these to model detection probability.
Ambient temperature and wind speed during surveys varied
from 158 C to 418 C and 0–17 km/hr, respectively. The
global model fit the data well and exhibited a symmetric
and narrow pattern of deviance residuals close to zero and
ĉ ¼ 1.1. Because temperature and time of day were highly
correlated (r ¼ 0.88, P ¼ 0.01), I did not include these in
the same model. I found strong evidence that detection
probability was influenced by ambient temperature interact-
ing with wind speed and differed among sites (second-degree
quadratic temp � wind þ site; model w ¼ 0.99). There
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was no evidence for support of the remaining 20 models (all
DAICc � 9.3 and wi � 0.009; Table 1; Fig. 1), including a
time trend attributed to prior knowledge of owl locations by
observers (all DAICc of time trend models >51.0 and
wi � 0.001; Table 1). The best model predicted detection
probability as a second-degree quadratic function of ambient
temperature, with maximum detection probability at the
vertex (Fig. 1). Wind speed negatively affected detection
probability at low temperatures and positively influenced it
at high temperatures (Fig. 1). Thus, the maximum detection
probability shifted to the right along the temperature gradi-
ent as wind speed increased, creating a saddle-shaped hyper-
bolic paraboloid response surface (Fig. 1). Detection
probability was highest at 218 C when wind was absent
and at 388 C when average wind speed was 30 km/hr
(Fig. 1). On 3 of the 4 site categories (based on aspect
and irrigation ditch type), second-degree quadratic temp �
wind was the best model. On the fourth, it was competitive
(DAICc ¼ 1.67) with second-degree quadratic temp þ
wind. Combined, the 12 sites supported a derived estimate
of 227 activity centers, and densities varied among sites from
1.8 to 5.0 activity centers/km (x ¼ 2.9 activity centers/km,
SD ¼ 0.86).
During availability surveys, ambient temperature and wind

speed varied between varied from 208 C and 418 C and
0 km/hr and 9.6 km/hr, respectively. I found that the prob-
ability of �1 owls being available for detection at an activity

center was a curvilinear function of temperature, as expressed
in the relationship between the arcsine square-root trans-
formed proportions of time available and temperature
(wi ¼ 0.72, pseudo r2 ¼ 0.44; Table 2; Fig. 2). There was
less evidence for time of day (DAICc � 2.4 and wi � 0.23;
Table 2) and no evidence for wind as single, additive, or
interactive factor affecting availability (Table 2). The prob-
ability of a burrowing owl activity center being available for
detection had a positive effect on detection probability and
explained half of the variation in detection probability
(adjusted r2 ¼ 0.51, F1, 82 ¼ 84, P ¼ 0.001; Fig. 3). This
model predicted an average detection probability of
0.61 when availability was 100%, indicating that the re-
maining 39% of detection probability at this level of esti-
mated availability was attributable to factors other than
availability.

DISCUSSION

Detection probability of burrowing owl activity centers in
southwest agroecosystems during early stages of the breeding
cycle was affected by ambient air temperature and wind
speed, with the magnitude of influence by these interacting
factors varying among sites. Additionally, the relationship
between these factors and detection probability was not
linear. I found that detection probability followed a bell-
shaped response curve with ambient temperature, but this
relationship was affected by wind speed such that maximum

Table 1. Closed-population capture-recapture models predicting detection probability of burrowing owl activity centers during 132 point-coordinate capture-
recapture survey occasions conducted at 12 6-km nesting sites within the agroecosystem of the Imperial Valley, California, USA, 2006. I conducted surveys
during the incubation and early nestling stages of the breeding cycle. Predictors were: ambient air temperature (temp), wind speed, 1-hr time intervals
throughout the day (time, n ¼ 11), and site (n ¼ 12).

Modela K DAICc wi Dev

Second-degree quadratic temp � wind þ site 16 0 0.986 1,979.89
Second-degree quadratic temp þ site 14 9.34 0.009 1,993.27
Second-degree quadratic temp þ wind þ site 15 10.77 0.005 1,992.68
Second-degree quadratic temp � wind 5 34.46 0 2,036.54
Second-degree quadratic time þ site 14 37.23 0 2,021.16
Wind þ second-degree quadratic time þ site 15 38.81 0 2,020.72
Wind � second-degree quadratic time þ site 16 39.70 0 2,019.59
Wind � time trend þ site 15 51.70 0 2,033.61
Time trend þ site 13 52.48 0 2,038.44
Wind þ time trend þ site 14 53.71 0 2,421.90
Temp þ site 13 55.95 0 2,041.91
Temp þ wind þ site 14 57.76 0 2,041.69
Temp � wind þ site 15 58.11 0 2,040.02
Site 12 60.82 0 2,048.80
Wind þ site 13 62.83 0 2,048.79
Second-degree quadratic temp þ wind 4 78.09 0 2,082.18
Temp þ wind 3 78.38 0 2,084.48
Wind þ second-degree quadratic time 4 80.70 0 2,084.78
Wind þ time trend 3 83.87 0 2,089.96
Second-degree quadratic temp 3 97.53 0 2,103.63
Temp 2 113.54 0 2,121.64
Second-degree quadratic time 3 113.61 0 2,119.70
Temp � wind 4 118.77 0 2,122.86
Wind 2 127.28 0 2,135.39
Time trend 2 128.21 0 2,139.31
Constant detection 1 136.17 0 2,146.27

a Model notation refers to parameters of detection probability. Abbreviations are: number of parameters (K), difference in Akaike’s Information Criterion
adjusted for sample size (DAICc), Akaike weight (wi), and deviance (Dev). I constructed encounter histories from visual detections during driving surveys
using the point-coordinate capture-recapture method with the maximum distance moved set at 58 m (Manning and Goldberg 2010). I modeled recapture
and initial capture probabilities as equal (c ¼ p). The best approximating model had an AICc ¼ 2,368.19.
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detection probability shifted along the temperature gradient
as a function of wind speed, creating a saddle-shaped hyper-
bolic paraboloid response surface. The same model was the
highest ranked or competing best model in all 4 groups, and
the same basic shape was present in sites grouped according
to aspect of slopes and type of irrigation ditch, showing that
the saddle-shaped pattern in detection was consistent across
sites. Nonlinear relationships between factors that affect
detection probability of burrowing owls have not been
reported elsewhere. This curvilinear response surface may
depict a broader response pattern to temperature and wind
gradients across the owl’s range and can bias range-wide
estimates of burrowing owl population size or population
trends if not accounted for in survey protocols and data

Figure 1. Best model (A) of detection probability of burrowing owl activity
centers as predicted by ambient temperature and wind speed in the agroe-
cosystem of the Imperial Valley, California, USA, 2006. Data are from 132
point-coordinate capture-recapture visual driving surveys from 0630 hours
to 1830 hours during the incubation and early nestling stages of the breeding
cycle. I averaged detection probability over 12 sites. Upper and lower surfaces
are 95% confidence limits. A 2-dimensional plot (B) can be used to select
ambient temperature and wind speeds that maximize detection probability.

Table 2. Linearmixedmodels predicting probability of a burrowing owl activity center being available for detection (�1 burrowing owls is aboveground) during
96 time budget surveys over 11 consecutive daytime hrs at 8 activity centers in the agroecosystem of the Imperial Valley, California, USA, 2006. I conducted
surveys during the incubation and early nestling stages of the breeding cycle.

Modela K DAICc wi Psuedo r2

Temp 4 0 0.721 0.44
Second-degree quadratic time 5 2.4 0.221 0.38
Temp þ wind 5 6.2 0.032 0.32
Wind 4 7.8 0.014 0.31
Wind þ second-degree quadratic time 6 8.8 0.009 0.31
Second-degree quadratic temp 5 11.8 0.002 0.26
Temp � wind 6 14.5 <0.001 0.22
Second-degree quadratic temp þ wind 6 18.1 <0.001 0.21
Wind � second-degree quadratic time 7 22.1 <0.001 0.21
Second-degree quadratic temp � wind 7 35.2 <0.001 0.01

a Model notation refers to parameters of detection probability. Abbreviations are: number of parameters (K), difference in Akaike’s Information Criterion
adjusted for sample size (DAICc), Akaike weight (wi), and pseudo r2 (McFadden 1973). I considered activity centers random effects, and I arcsine square-
root transformed availability. The best approximating model predicted availability as a curvilinear function of temperature, expressed by the relationship
between arcsine square-root transformed proportions of time and temperature. The best approximating model had an AIC ¼ 78.6.

Figure 2. Probability that burrowing owl activity centers were available for
detection (i.e., �1 owls aboveground) predicted by the best linear mixed
model as a curvilinear function of temperature, expressed as a relationship
between arcsine square-root transformed proportions of time and tempera-
ture in the agroecosystem of the Imperial Valley, California, USA, 2006.
Circles are untransformed proportions of time owls were available for detec-
tion. Data are from 96 time budget surveys repeated during 11 consecutive
daytime hours at 8 activity centers.
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analyses, particularly in southwest agroecosystems where
large concentrations of breeding burrowing owls exist.
Availability for detection declined as temperature in-

creased, and followed the same trend as detection probability
at temperatures �208 C. In another study, availability of
owls declined to its lowest level in mid-afternoon, when
temperatures would be highest, at which time surveys of
abundance estimated only 10–25% of the population
(Thomsen 1971). If owls use their burrows to aid in ther-
moregulation at temperatures <208 C, the probability of
being available may begin to decline with continued
decreases in temperature below those temperatures recorded
during my PCCR surveys; such a decline in detection prob-
ability with decreasing temperature was reported in the
northern portion of the owl’s breeding range (Conway
et al. 2008). Thus, availability for detection is an important
source of variation in detection probability during burrowing
owl surveys intended for documenting distribution and esti-
mating abundance and should be considered in future local
and range-wide survey protocols.
The probability of a burrowing owl activity center being

available for detection during time budget surveys explained
51% of the variation in detection probability during PCCR
surveys, indicating that availability for detection is an im-
portant component of detection probability during standard-
ized owl surveys. Detection probability would be expected to
be lower than the probability of being available for detection
(Fig. 3), although my estimates of availability may have been
high because I considered owls that were aboveground
during time budget surveys to be available for detection,

regardless of whether observers lost sight of them.
Although this consideration may have lowered the estimated
intercept in the simple linear regression model, probabilities
of detection and availability were linearly related, indicating
that the factors affecting imperfect detection appear to be
reasonably constant across a range of probabilities of being
available for detection. Additionally, the residual scatter
between probabilities of detection and availability can
be attributable to imperfect probabilities explained by the
measured variables, with both explained largely by similar
nonlinear declines associated with temperature.
The bell-shaped response of detection probability to am-

bient temperature may have been detectable during this study
because of the wide range of daily April and May temper-
atures (3.3–47.88 C; Western Regional Climate Center
2010). These temperatures constitute an environmental gra-
dient, across which owls need to maintain thermoneutrality
(Coulombe 1970). Burrowing owls exhibit mild heat stress at
418 C and use shaded areas, burrows, and raised perches such
as utility poles, utility wires, shrubs, and hay stacks to reduce
body heat at high temperatures (Coulombe 1970, 1971). Use
of hay stacks, shrubs, and other raised perches that offer
shaded areas may obscure owls from observers, and owls that
retreat into burrows are unavailable for detection, all of
which can reduce detection probability during standardized
surveys. Additionally, other researchers have reported a pos-
itive relationship between temperature and detection proba-
bility similar to what I found for temperatures below those
associated with maximum detection probability. For exam-
ple, Conway et al. (2008) reported an increase in detection
probability with increased ambient temperature during
detection trials in eastern Washington and Wyoming, and
most (95%) of their detection trials occurred at temperatures
�268 C.
There are several possible explanations for why wind speed

was important for detection but not availability for detection
above ground. First, I considered owls that were above-
ground during time budget surveys to be available for detec-
tion, regardless of whether observers lost sight of them.
Although I did not evaluate effects of wind speed on owls
being visible while above ground during these surveys, it is
possible that wind reduced foraging efficiency, causing owls
to forage at greater distances away from burrows and irriga-
tion ditches where observers were less likely to detect them
during PCCR detection surveys. Alternatively, the interac-
tion between wind and temperature may have affected the
detection process by altering aboveground behaviors and
perch use. I suspect high wind speeds may have reduced
heat stress during high temperatures, allowing owls to
remain outside of burrows and be available for detection,
because I often observed owls nestled down next to burrow
entrances or rocks, as well as other debris near the burrow
entrance when wind and temperature were high, enabling
observers to readily detect the owls.
Factors in addition to those I included may also be

important sources of variation in detection probability of
burrowing owls. Variation among sites may have been due
to the amount of time owls spent standing at the entrance of

Figure 3. Detection probability of burrowing owl activity centers as a func-
tion of probability of being available for detection (i.e., �1 owls above-
ground) in the agroecosystem of the Imperial Valley, California, USA,
2006. Data are from 84 point-coordinate capture-recapture visual driving
surveys and time budget surveys from 0630 hours to 1930 hours during the
incubation and early nestling stages of the breeding cycle where temperature
and wind speed were 20–418 C and <9.6 km/hr, respectively. I estimated
detection probability based on the best model (Table 1).
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nest burrows (Conway et al. 2008). Variable land uses,
vegetation characteristics, and types of perches used by bur-
rowing owls may further reflect differences among sites
(Coulombe 1971, Williford et al. 2007). Although prior
knowledge of owl locations did not influence detection
probability in subsequent survey occasions at a site, different
observers conducted surveys at the 12 replicate sites, and
variation between observers may have also contributed to
differences in detection probability I found among sites
(Diefenbach et al. 2003). However, the hyperbolic parabo-
loid pattern in detection probability should be robust to
observer differences, as the same model and basic shape
consistently described the variation in detection probability
in the 4 categories of sites even though different observers
were involved in conducting surveys. Potential effects of
cloud cover were not considered here because drought con-
ditions led to most PCCR surveys (98%) being conducted
during cloud-free days, although periods of high cloud cover
were found to lower detection probability in southeastern
Washington (Conway et al. 2008).
Additionally, I did not investigate the effect of stage of the

breeding cycle on detection probability because my goal was
to identify factors that affect detection probability during
brief survey periods to achieve a critical assumption of closed-
population estimators: the population is closed to emigra-
tion, immigration, births, and deaths (Otis et al. 1978).
Although the stage of the breeding cycle does affect detec-
tion probability of burrowing owls (Conway et al. 2008), my
surveys were restricted to the period including only the
incubation and early nestling stages because nestlings and
incubating females are underground (Coulombe 1971,
Thomsen 1971, Plumpton and Lutz 1993). I also did not
control for variation in early stages of nesting phenology
because owl surveys often involve the detection of nests that
differ in phenological stage; these stages are difficult to
ascertain and often are not determined during population
surveys (California Burrowing Owl Consortium 1997,
Arizona Game and Fish Department 2007). Not distin-
guishing among the early nesting stages during this brief
period may have added additional variation among sites, but
I believe this variation did not influence the general pattern
in detection probability I found because the same model and
shape of the detection response surface was consistent among
the 4 site categories that were confounded by the timing of
surveys and average nesting stage among sites.
Surveying only during this stage of the breeding cycle also

helped minimize risk of double counting activity centers in
this dense population while conducting PCCR surveys
of unmarked owls (Manning and Goldberg 2010).
Additionally, although nest failure or mate loss may instigate
dispersal (Catlin et al. 2005), I assumed it did not occur
during the 11 consecutive 1-hr PCCR survey occasions at
each site. Lastly, the continued increase in detection proba-
bility I found at high temperatures and wind speeds may be
an artifact of the small sample of PCCR survey occasions
when temperatures and wind speeds were high (>348 C and
>20 km/hr; n ¼ 9 of 132 survey occasions). When I re-
moved these 9 activity centers in an ad hoc analysis, the same

saddle-shape in detection probability was present, but the
overall predicted slope in detection above these temperatures
and wind speeds declined. Thus, I caution against using the
detection probabilities estimated from my model when both
ambient temperature and wind speed are high until studies
with a larger sample of surveys under these conditions can
validate that portion of the pattern in detection probability.

MANAGEMENT IMPLICATIONS

My results identify some of the sources of variation in
detection probability and the probability of being available
for detection in southwest agroecosystem environments, and
indicate the importance of being available for detection as a
source of variation in detection probability during standard-
ized surveys. Ambient temperature and wind speed affected
detection probability of burrowing owls in this southwest
agroecosystem differently than in the owl’s northern breed-
ing range, and these factors should be accounted for when
developing survey protocols in these southwest environ-
ments. The relationship between detection probability, am-
bient temperature, and wind speed (Fig. 1B) can be used to
improve detection probability during visual surveys and can
be used to provide guidance in the timing of future surveys in
these environments. The timing of surveys should lie within
the range of temperatures and wind conditions associated
with average detection probabilities >0.5 to avoid problems
with low detection probabilities that can lead to unreliable
model-based estimators of population size (Otis et al. 1978,
Rosenberg et al. 1995). To increase detection probability,
investigators should avoid conducting surveys when temper-
atures are >338 C with concomitant wind speeds <8 km/hr
and when temperatures are <218 C with concomitant wind
speeds>4 km/hr. Survey designs intended to estimate abun-
dance of owls should incorporate methods to estimate and
correct for variation in detection probability that include
measurements of ambient temperature and wind speed for
use as covariates. Lastly, future range-wide and local survey
efforts should incorporate methods to account for detection
and availability biases.
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