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Abstract

Understanding factors regulating hybrid fitness and gene exchange is a major

research challenge for evolutionary biology. Genomic cline analysis has been

used to evaluate alternative patterns of introgression, but only two models have

been used widely and the approach has generally lacked a hypothesis testing

framework for distinguishing effects of selection and drift. I propose two alter-

native cline models, implement multivariate outlier detection to identify mark-

ers associated with hybrid fitness, and simulate hybrid zone dynamics to

evaluate the signatures of different modes of selection. Analysis of simulated

data shows that previous approaches are prone to false positives (multinomial

regression) or relatively insensitive to outlier loci affected by selection (Barton’s

concordance). The new, theory-based logit-logistic cline model is generally best

at detecting loci affecting hybrid fitness. Although some generalizations can be

made about different modes of selection, there is no one-to-one correspondence

between pattern and process. These new methods will enhance our ability to

extract important information about the genetics of reproductive isolation and

hybrid fitness. However, much remains to be done to relate statistical patterns

to particular evolutionary processes. The methods described here are imple-

mented in a freely available package “HIest” for the R statistical software

(CRAN; http://cran.r-project.org/).

Introduction

Hybrid zones are natural experiments offering unique

insights into evolution (Endler 1977; Hewitt 1988; Harrison

1990; Buerkle and Lexer 2008). In addition, hybridization

is common in nature, and constitutes an important phe-

nomenon impacting the evolution of diversity and novelty

(e.g., Anderson 1948; Anderson and Stebbins 1954; Whi-

tham 1989; Harrison 1993; Hewitt 2001; Arnold 2006;

Arnold and Martin 2009). Hybrids and hybrid zones bring

many new combinations of alleles together simultaneously,

potentially leading to rapid evolution of multilocus novel-

ties that would be difficult to evolve on a locus-by-locus

basis (Rieseberg and Linder 1999; Rieseberg et al. 2003;

Arnold 2006; Gompert et al. 2006; Mavarez et al. 2006;

Fitzpatrick and Shaffer 2007a). Recombination in hybrid

populations allows different loci to evolve differently

depending on their linkage relationships and functional

interactions with other loci.

An important question is to what extent different genes

behave as members of a single “coadapted gene complex”

(Dobzhansky 1937; Mayr 1942; Michel et al. 2010), as

parts of a few coevolving “genomic islands” (Turner et al.

2005; Nachman and Payseur 2012; Nosil and Feder 2012),

or as free agents establishing locus-specific patterns of var-

iation according to their own particular effects on organis-

mal performance (Dawkins 1976; Wu 2001; Morjan and

Rieseberg 2004). In nature, hybrid zones are recognizable

because many features of the interacting organisms show

concordant, narrow clines, consistent with limited

exchange between coadapted gene pools (Key 1968; Harri-

son 1993; Butlin 1998). Early hybrid zone theory suggested

different genes would show different patterns of gene flow

and introgression (Barton 1979; Barton and Bengtsson

1986). Barton (1983) and Baird (1995) showed how

groups of loci can become synergistically “coupled”

(depending on the ratio of selection to recombination) to

form strong barriers to gene exchange. With increasingly

sophisticated molecular tools for evaluating genome-wide

patterns of variation, evidence of genomic heterogeneity in

patterns of gene flow is accruing at all levels from locally

adapted populations to highly differentiated taxa (e.g.,

Arnold 2006; Yatabe et al. 2007; Nosil et al. 2008;

Fitzpatrick et al. 2009; Gompert et al. 2010).
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One promising way to evaluate variation among loci in

rates and patterns of gene exchange is statistical analysis

of genomic clines. Genomic cline analysis explicitly

compares allele or genotype frequencies of each locus (or

locus-specific ancestry) to a genome-wide average repre-

senting the genomic ancestry of an individual or popula-

tion (Gompert and Buerkle 2011). The approach was

pioneered by Szymura and Barton (1986) as a comple-

mentary alternative to geographic cline analysis, where

genetic data are evaluated against spatial coordinates or

distance. Geographic cline analysis is not always appropri-

ate, for example, in mosaic hybrid zones where hybridiz-

ing taxa segregate by habitat at a finer grain than their

overlapping geographic ranges (Harrison and Rand 1989;

Howard et al. 1993), broadly admixed populations such

as humans in North America (Parra et al. 1998), captive

livestock herds (Musani et al. 2006), introduced species

(Hansen et al. 2001; Fitzpatrick and Shaffer 2007b), or

other dynamic hybrid zones with patchy introgression

(Machol�an et al. 2011).

The basic idea of genomic clines is that, in a hybrid

zone or hybrid population between parental populations

P1 and P2, each individual (or deme) can be described

by their genome-wide mean ancestry S = proportion of

nucleotides inherited from P1. If all genes followed a

single underlying pattern, then S is their mutual

expected value of locus-specific ancestry: pi = proportion

of copies of locus i inherited from P1. Note that shared

ancestry is not necessarily equivalent to shared state. For

a diagnostic marker (fixed for different alleles in P1 and

P2), pi is the frequency of P1 alleles. For nondiagnostic

markers, inferences about ancestry must be made from

observations about shared allelic states. The goal of

genomic cline analysis is to evaluate locus-specific devia-

tion from the expectations E(pi) = S. Particular patterns

of deviation can help identify genomic regions experi-

encing directional selection, hybrid dysfunction, or

hybrid vigor (Szymura and Barton 1986; Gompert and

Buerkle 2011).

Until now, locus-specific deviations from genome-wide

ancestry have been quantified using the polynomial func-

tion suggested by Szymura and Barton (1986), and multi-

nomial logistic regression (Lexer et al. 2007; Gompert

and Buerkle 2009). Barton’s approach is implemented in

the package “Analyse” under the name “Concordance”

(Barton and Baird 1995). The Barton function has two

properties that might be undesirable for genomic clines

(Gompert and Buerkle 2011). First, it can be greater than

one or less than zero – impossible values for a proportion

or probability. Second, even within the interval [0,1], the

Barton cline is not necessarily monotonically increasing:

The curve can have an intermediate local maximum and

minimum, which is unexpected albeit not impossible in

light of population genetics theory. Gompert and Buerkle

(2011) proposed to overcome these undesirable features

by splicing in flat lines in an ad hoc manner. Logistic

regression-based approaches satisfy the challenge of mod-

eling probabilities on the interval [0,1], but are less flexi-

ble in terms of the form of the fitted curves and assume

the independent variable ranges from negative to positive

infinity (McCullagh and Nelder 1989). The latter assump-

tion is explicitly violated in genomic cline analysis, where

the independent variable is also a proportion on [0,1].

Here, I evaluate two alternative functions that overcome

these problems, one phenomenological and the other

derived from population genetic theory. I also implement

multivariate outlier detection as an alternative to previous

hypothesis testing approaches that confound selection and

drift (Gompert and Buerkle 2009; Machol�an et al. 2011),

and simulate hybrid zone and admixture dynamics to

assess the effects of different modes of selection.

Methods

Deriving the logit-logistic cline model

Bazykin (1969) used the continuous-space diffusion

model for population genetics (Fisher 1937) to show that

the expected form for a cline caused by heterozygote

disadvantage is the familiar logistic function of Richards

(1959):

pi ¼ ebiðx�miÞ

1þ ebiðx�miÞ ¼
1

2
ð1þ tan h½biðx �miÞ=2�Þ (1a)

or

logitðpiÞ ¼ biðx �miÞ (1b)

where mi is the cline center for locus i (spatial position of

the inflection point) and bi is the slope of the curve at

the inflection point, determined in the model by the

strength of selection against heterozygotes and the average

dispersal distance (Bazykin 1969). Investigators often con-

sider the cline width 1/b as a fundamental description of

a cline and the same form has been used to describe

clines maintained by different kinds of selection or even

neutral clines where the cline width depends only on dis-

persal and the time since secondary contact (Slatkin 1973;

Endler 1977; Barton and Gale 1993; Guedj and Guillot

2011). If we assume the genome average ancestry follows

a geographic cline

logitðSÞ ¼ bðx �mÞ (2)

an expression for pi in terms of S arises on rearranging

equation 2 as x = (1/b) logit(S) + m and substituting for

x in equation 1 to get
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logitðpiÞ ¼ bi
b
logitðSÞ � biðmi �mÞ (3)

or, define ui = bi(mi � m) indicating a relative difference

in cline position and mi = bi/b indicating the relative slope

of pi and

logitðpiÞ ¼ milogitðSÞ � ui (4)

or

pi ¼ Smi

Smi þ ð1� SÞmi eui (4b)

This is the “logit-logistic” function describing a geno-

mic cline for a given locus i in terms of the average

genome-wide ancestry S. The parameters can be estimated

from data (see below) for a sample of loci as a way to

describe multilocus clines and potentially identify excep-

tional loci, even in situations where the geographic model

does not literally apply (e.g., in mosaic hybrid zones or

within single hybrid populations) or takes a more compli-

cated form than the simple logistic function, for example,

when clines are asymmetric or stepped (Barton 1983;

Baird 1995; Porter et al. 1997).

The logit-logistic function follows the constraints

appropriate for a relationship between two proportions

(Pi ∊ [0,1] and S ∊ [0,1]). It also conforms to the defini-

tion of S as the mean pi, in that when S = 0, all pi = 0,

and when S = 1, all pi = 1. The genomic cline for pi devi-

ates from the mean when the ratio of slopes mi deviates
from 1.0 and/or the relative cline center ui differs from

zero.

Alternative cline forms

The Barton cline (Szymura and Barton 1986) relates

expected ancestry at a particular locus pi to genome-wide

ancestry S as

piðBartonÞ ¼ Sþ 2Sð1� SÞðai þ bið2S� 1ÞÞ: (5)

The coefficients ai and bi describe deviations in cline

center and steepness relative to perfect concordance (pi = S

when ai = bi = 0). Locus-specific ancestry pi(Barton) = 0

when genome-wide ancestry S = 0 and pi(Barton) = 1

when S = 1. The Barton cline is not strictly monotonic

(two local extrema are possible when the absolute value of

either coefficient is large) and can take values outside [0,1],

undesirable for a function describing probabilities. Gom-

pert and Buerkle (2011) introduced ad hoc splicing of flat

lines into the function to remove these undesirable fea-

tures. Given that local extrema might be real features of a

given dataset, I adopt the splicing of horizontal lines at 0

and 1, but allow nonmonotonicity in my analysis (as in

Barton and Baird 1995). Among the functional forms

compared here, the possibility of nonmonotonicity is a

unique feature of the Barton function that might make it

the best model for certain datasets.

The regularized incomplete beta function is a strictly

monotonic, but otherwise very flexible function that also

describes the cumulative distribution function of a beta

random variable.

piðbÞ ¼

RS
0

vlimi�1ð1� xÞð1�liÞmi�1dx

R1
0

vlimi�1ð1� xÞð1�liÞmi�1dx

(6)

where l and m are location and shape parameters related

to the more familiar beta shape parameters as a = lm and

b = (1 � l)m (Kruschke 2010). The B(l, m) parameteriza-

tion is useful for genomic clines because l plays a similar

role to u in the logit-logistic and a in the Barton cline

and m a similar role to v and b. Like the logit-logistic

cline, the beta cline is zero when S = 0 and one when

S = 1, it is strictly monotone, and pi(b) is never more

than one or less than zero.

Although the logit-logistic, Barton, and beta clines have

the same number of parameters to estimate, the procrus-

tean splicing of flat lines onto the Barton function to sat-

isfy range constraints makes it more cumbersome than

the others in a way not accounted for by model selection

criteria such as AIC. That is, more information is

required to specify the spliced Barton model even though

it does not produce estimates of more parameters (Rissa-

nen 1978, 2005; Gr€unwald 2004). Moreover, I take it as

an underlying principle that the true relationship between

locus-specific ancestry probability and the genome-wide

average is smooth (continuously differentiable) on the

interval (0,1). That is, we do not realistically expect the

locus-specific probability to be identically 1.0 except when

the genome-wide average is 1.0; and we do not realisti-

cally expect an abrupt plateau of identical probabilities

over any interval, as implied by the spliced-in flat line.

Empirically, the spliced Barton function might be an ade-

quate (or even superior) approximation to the underlying

smooth relationship, but all other things being equal, a

mathematical model reflecting the underlying principle of

smoothness would be preferable.

Regression-based approaches

Multinomial regression has been used to describe the prob-

ability of a locus being heterozygous or homozygous as a

function of genome-wide ancestry S (Lexer et al. 2007;

Gompert and Buerkle 2009). These clines in genotypic fre-

quency differ from clines in allele frequency because multi-

nomial regression captures the heterozygosity component
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of hybrid genotypes. However, multinomial regression uses

sigmoid functions that are somewhat less flexible than the

cline models described above, and the estimated

probabilities approach zero and one asymptotically instead

of reaching limits as S reaches its finite limits at zero and

one. Despite these limitations, multinomial regression

should be considered because of the potential information

gained by considering genotype rather than allele

frequencies.

A simple binomial (logistic) regression could be used

to describe allele frequencies pi in terms of S. This consid-

ers the same variables as the cline models above and

estimates the same number of parameters. However, it

shares with multinomial regression the problem that it is

designed to model probabilities that approach zero and

one as the independent variable approaches infinity (posi-

tive or negative), and therefore is not entirely appropriate

for an independent variable on the finite interval [0,1].

From a practical standpoint, this might be desirable flexi-

bility or an undesirable violation of constraints, depend-

ing on one’s assumptions. That is, if pi is taken to

represent an allele frequency rather than a true ancestry

probability, then whatever the value of pi at S = 1 is the

predicted frequency of the allele in a “pure” P1 popula-

tion. However, if ancestry is defined as the expectation

(S = E(pi)) for all L loci in the genome, the constraint

should not be violated. Approaches for defining and esti-

mating S are evolving (e.g., Alexander and Lange 2011;

Gompert and Buerkle 2011), and whether the individuals

in the admixture analysis are used to define and/or

estimate S and pi might affect the validity of one’s

assumptions.

In the following analysis, I compare the three cline

models (logit-logistic, Barton, and beta) and both multi-

nomial and binomial regression in terms of their good-

ness-of-fit to real and simulated data and their usefulness

in identifying outlier loci potentially linked to loci affect-

ing hybrid fitness.

Fitting models to data

Genetic data are categorical, and often best analyzed as

counts. I take the simple approach of considering one

allele per locus: A1 assumed fixed in P1 and absent in P2,

so the expected frequency of A1 in hybrids is the locus-

specific ancestry probability P. A more general implemen-

tation for multiple or nondiagnostic alleles is feasible, but

beyond the scope of this paper, which is focused primar-

ily on the value of alternative functional forms.

The genotype of a diploid individual for the particular

locus is represented as a count (number of A1 alleles: 0,

1, or 2) and can be modeled as a random draw of two

from a binomial distribution with probability of success

P. Likewise, a sample of n individuals can be modeled as

a random draw of 2n from the same binomial distribu-

tion. Let x be the number of A1 alleles in a sample of size

2n. The probability of x given P is the binomial mass

PrðX ¼ xÞ ¼ 2n
x

� �
pxð1� pÞ2n�x. Under Hardy–Wein-

berg assumptions (e.g., Hardy 1908; Hartl and Clark

1997), P is the population allele frequency of A1. But

population-level Hardy–Weinberg equilibrium need not

be assumed if P can be estimated independently for an

individual or group. The genomic clines approach models

variation in P among individuals, groups, or sites (e.g.,

eqs. 1–3), such that the binomial assumption need apply

only “locally” for individuals characterized by the same S.

Given K samples with varying P, the likelihood of the

parameters is proportional to the product of binomials:

Lðpjx;nÞ /
YK
k¼1

2nk
xk

� �
pxkk ð1� pkÞ2nk�xk : (7)

Now let pk be given by one of the cline functions

(eqs. 4, 5, or 6). Then equation 7 can be used to calculate

the likelihood of model coefficients given x, n, and an

estimate of S for each sample. Note that this is the same

likelihood function maximized in binomial regression,

with logit = (pk) = a + bS (McCullagh and Nelder 1989).

I wrote functions in R (R Development Core Team

2011) to search for maximum likelihood estimates for

each function described here. I implemented the likeli-

hood search using the native R function “optim.” For the

regression-based methods, I used the functions “multi-

nom” and “glm” to fit multinomial and binomial models,

respectively (Venables and Ripley 2002).

Gompert and Buerkle (2011) developed a hierarchical

Bayesian method for estimating Barton cline parameters

while accounting for uncertainty in parental allele fre-

quencies and explicitly modeling locus-specific effects.

This Bayesian method has been extended to account for

linkage relationships and uncertainty in genotyping

(Gompert and Buerkle 2012; Gompert et al. 2012a,b).

Presumably, their approach could readily incorporate the

cline functions reviewed here, but developing such

computational tools is beyond the scope of this study.

My goal is to illustrate the value of considering multiple

alternatives for genomic cline analysis. I presume that the

relative performance of the functional forms under the

likelihood framework predicts relative performance under

a Bayesian framework because the additional uncertainty

accounted for (owing to genotyping error and uncertainty

in parental allele frequency estimates) would be identical,

no matter which equation is being fit. This might not be

true in the case of the multinomial, which relies on accu-

rate discrimination of heterozygotes and homozygotes;
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genotype frequency estimates might be prone to greater

error than allele frequency estimates.

Outlier detection

The major goal of genomic cline analysis is usually to

identify markers affected by selection – that is, those

linked to genes contributing to hybrid dysfunction, hybrid

vigor, or local adaptation (e.g., Lexer et al. 2007; Gompert

et al. 2012a). However, it is insufficient to identify candi-

date markers by rejecting the na€ıve null hypothesis that

locus-specific ancestry should match the genome-wide

average (pi = S). This is because genetic drift alone will

generate real variation among loci. This problem has been

acknowledged by previous investigators (e.g., Gompert

and Buerkle 2009). But a generally acceptable solution

remains elusive.

Traditional hypothesis tests based on likelihood (Barton

and Baird 1995; Machol�an et al. 2011) or randomization

(Gompert and Buerkle 2009) consider whether a model

fitted to a given locus deviates from the null hypothesis

more than expected from sampling alone. But to identify

markers that differ from the average by more than

expected from drift and sampling, we need to assess how

the true distribution of parameters might be affected by

drift. It appears that no appropriate theory has been

described for genomic clines, but it would likely depend

on difficult to measure factors such as population size,

dispersal behavior, and time since secondary contact

(Hartl and Clark 1997). Barton (2008) and Polechova and

Barton (2011) provide some relevant theory for geo-

graphic clines, but no theory-based test for a null distri-

bution of cline parameters has been proposed.

Long (1991) provides a sample-wide test for heterogene-

ity among markers for the special case of a single admixed

population (see Fitzpatrick et al. 2009). Gompert and

Buerkle (2011) identified outliers by assuming univariate

normal distributions for each parameter of the Barton

cline. This approach was far less prone to false positives

than the methods in INTROGRESS, which test the na€ıve

null hypothesis pi = S, with no effect of drift (Gompert and

Buerkle 2010, 2012). I take a similar (but multivariate) sta-

tistical approach here, using a traditional, general-purpose

method to identify outliers in multivariate data.

Assuming the joint distribution of parameter estimates

among loci is multivariate normal, the squared Mahalan-

obis distance D2 of each locus is expected to be distrib-

uted as a v2 random variable with degrees of freedom

equal to the number of parameters (Johnson and Wich-

ern 1998). A locus with D2 greater than a specified critical

value or visually deviating from a quantile–quantile plot

can be declared a statistical outlier (Johnson and Wichern

1998). For automated outlier detection, I used the

Bonferroni-adjusted critical P-value, but visual inspection

of quantile–quantile plots might be the best recommenda-

tion for exploratory analysis of real data.

This approach (or other general-purpose multivariate

methods) relies on the observed variation among markers

to establish an empirical basis for outlier detection. The

advantage is that the distribution evolves over time with

genetic drift. So, while genetic drift should make it pro-

gressively easier to reject the na€ıve null hypothesis for any

neutral marker with each passing generation, multivariate

outlier detection should remain more robust.

Simulated data

To examine how well the cline models and regression-

based methods fit data and reveal outliers, I used stochas-

tic individual-based simulations of secondary contact

between two populations under two kinds of population

structure. First is a geographically structured hybrid zone

where we can use decades of research on geographic

clines to inform our expectations with respect to genomic

clines. Second is a single admixed population with ran-

dom mating where geographic clines are not relevant. For

each of these scenarios, I consider the effects of immigra-

tion from pure parental populations and several kinds of

locus-specific selection.

For all model runs, secondary contact was initiated as

500 individuals from parental population P1 on one half

of the modeled space, and 500 individuals from P2 on

the other half. I kept track of 100 unlinked loci with two

alleles (a diagnostic, fixed difference between P1 and P2).

Most loci were neutral, but up to four could influence

hybrid fitness. These conditions represent “low coupling”

in the sense that synergistic effects of many loci are not

possible. If many loci affect fitness, we should expect

stepped clines and less clear distinction between “normal”

and “outlier” markers.

Hybrid zone model

Full details and computer code (written in R) are provided

in the publicly available R-package “HIest”. Here, I

describe the model verbally and explain the range of

parameter values investigated. The hybrid zone is modeled

as a rectangle in which a diploid individual can occupy any

x–y coordinate (space is continuous, 2-dimensional). Indi-

viduals are outcrossing hermaphrodites and act as the

female parent of a random number of offspring drawn

from a Poisson distribution with expected value deter-

mined by local density dependence and genetics. Individu-

als that draw a number greater than 0 draw a mate at

random from all other individuals in the population

according to a normal density function of their distance
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from the focal individual. Each offspring draws its x–y
location from a bivariate normal distribution centered on

its mother. For all simulations analyzed here, space ranged

from �3 to +3 in both dimensions and both the dispersal

and mating curves had standard deviations of 0.3 (5% of

the space).

In the absence of selection, the number of offspring

mothered by each individual is a Poisson random variable

with expected value given by a Beverton–Holt function

(Begon et al. 2006) of local density measured as the sum

over all individuals weighted by a normal density function

of their distance from the focal individual with standard

deviation 0.2. For most simulations I used a baseline

growth rate R = 2 and local carrying capacity K = 14,

which resulted in a steady state of approximately 1000

individuals distributed evenly across space.

In the presence of selection, the Beverton–Holt func-

tion was simply multiplied by the individual’s relative

fitness (see below). This means selection was limited to

the female component of fitness, effectively weakening the

intensity of selection.

The hybrid zone could be closed or open. When closed,

if an offspring drew a location outside of the defined

space, it was reassigned to a position at the nearest edge.

That is boundaries were reflecting, and no immigrants

were added during the simulation. When open, if an off-

spring drew a location within 5% of either x-boundary, it

was replaced by a pure parental genotype (P1 on one

side, P2 on the other). The y-boundary was still reflecting.

Thus, for an open simulation, an average of about 5% of

the individuals in the hybrid zone on each side (those

closest to the ends) were replaced by immigrants from

the parental populations.

Admixture model

To maintain as much similarity between models as possi-

ble, I simulated a panmictic population using the same

continuous space and local density-dependent reproduc-

tion, but mates were chosen at random from all other

individuals in the population without regard to distance,

and offspring drew their x–y coordinates from a uniform

distribution covering the entire space. That is, there was

no spatial correlation between mates or between parents

and offspring. As with the hybrid zone model, the popu-

lation could be closed or open. Again, in the latter case,

an average of about 5% of the individuals were replaced

by immigrants from each parental population.

Hybrid fitness

I modeled four kinds of locus-specific fitness effects. One

locus could affect fitness according to an environmental

gradient, one could have heterozygote disadvantage or

advantage, and a pair of loci could have a Dobzhansky–
Muller incompatibility (Turelli and Orr 2000; Fitzpatrick

2008). The remaining 96 loci were always neutral.

The environmental phenotype z of an individual was

determined by one locus (the “E locus”) and could take

values of 1.0, 0.5, or 0.0 for P1 homozygotes, heterozyg-

otes, and P2 homozygotes, respectively. The environmen-

tal fitness component for an individual was calculated as

a Gaussian function of the difference between its pheno-

type and the value g of the environmental gradient

we ¼ e�sEðz�gÞ2 (8)

where sE determines the strength of selection (I used val-

ues of 2 or 4). This fitness function gives P2 homozygotes

the advantage where g = 0, heterozygotes the advantage

where g = 0.5, and P1 homozygotes the advantage where

g = 1. The environmental gradient was defined as a logis-

tic function of the x-dimension (logit(g) = b(x�m)) with

a slope b of 1 and midpoint m at 1, 2, or -4 from the

hybrid zone center (the latter case amounting to a univer-

sal advantage for the P1 allele). In the admixture model,

the environmental gradient (with midpoints at 1 or 2)

favored P2 alleles because most of the area was favorable

to P2 homozygous phenotypes.

Heterozygote advantage was modeled by assigning

fitnesses to genotypes of an “H” locus:

wh ¼ 1; if heterozygous
1� sH ; if homozygous

�
(9)

I used sH = 0.4 and sH = 0.8. Heterozygote disadvantage

was modeled by

wh ¼ 1� h; if heterozygous
1; if homozygous

�
(10)

with h = 0.4 or h = 0.8.

Finally, two other loci (A and B) could have a

Dobzhansky–Muller incompatibility with fitness according

to Table 1. I used only the simple case of a partial reces-

sive incompatibility with selection d = 0.4 or 0.8. Simula-

tions were performed with no selection, one kind of

Table 1. Fitness effects of a Dobzhansky–Muller incompatibility

between loci A and B. Subscripts denote alleles from P1 or P2.

A1A1 A1A2 A2A2

B1B1 1 1� 1
2 d 1�d

B1B2 1 1 1� 1
2 d

B1B2 1 1 1

This is a simple case of the general model (Turelli and Orr 2000;

Gavrilets 2004; Fitzpatrick 2008) with the incompatibility acting as a

partial recessive.
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selection, or combinations of environmental selection,

heterozygote dysfunction, and Dobzhansky–Muller

incompatibilities (Table 2).

These different causes of hybrid fitness variation can

lead to distinct patterns in geographic and genomic clines

(Fig. 1). Environmental selection (or universal advantage

of an allele from one parental lineage) can cause geo-

graphic and genomic clines to be displaced or result in

fixation of one allele (Fig. 1A, B, F, G). Heterozygote dis-

advantage can cause a locus-specific cline to be steeper

than average in both geographic and genomic analyses

(Fig. 1C, H). Heterozygote advantage causes a relatively

shallow geographic cline and an “inside-out” genomic

cline (Fig. 1D, I). Dobzhansky–Muller incompatibilities

tend to result in displacement of each partner locus in

opposite directions in both kinds of analysis (Fig. 1E, J).

The same kinds of genomic cline patterns arise under the

same kinds of fitness models whether geographic structure

is present or not (hybrid zone vs. admixture model), but

the expected variance among neutral markers was higher

in the hybrid zone model (Figs. 2 and 3).

The examples depicted in Figure 1 also illustrate the

hitchhiking effect of each kind of selection; at least for the

strong selection simulated here, spatial clines for the

unlinked neutral loci were strongly distorted relative to the

no-selection case, except for the Dobzhansky–Muller

incompatibility case, for which the neutral clines (black

Table 2. Parameter values for simulations.

b sE m H sH d

0 0 0 0 0 0

1 2 1 0 0 0

1 2 2 0 0 0

1 4 1 0 0 0

1 4 2 0 0 0

0 0 0 0.4 0 0

0 0 0 0.8 0 0

0 0 0 0 0 0.4

0 0 0 0 0 0.8

1 2 1 0.4 0 0

1 2 2 0.4 0 0

1 2 1 0 0 0.4

1 2 2 0 0 0.4

0 0 0 0.4 0 0.4

1 2 1 0.4 0 0.4

1 2 2 0.4 0 0.4

0 0 0 0 0.8 0

2 4 �4 0 0 0

Each set was run under closed and open conditions for both the

hybrid zone and admixture models (for a total of 72 runs). b and m

are the slope and midpoint of the environmental gradient; sE is the

strength of selection on the environmental phenotype (eq. 8); h is

heterozygote disadvantage (eq. 10); sH is heterozygote advantage

(eq. 9); d is the strength of the Dobzhansky–Muller incompatibility

(Table 1).

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

Figure 1. Example simulation from the open hybrid zone model with different kinds of single-locus selection. The top row of panels shows

spatial clines (eq. 1) for 99 neutral loci (black lines) and one selected locus (red). The second row shows cubic smoothing splines fitted to the

selected locus data as a function of genome-wide ancestry. In the P1 advantage case (A and F), relative female fitness of P2 homozygotes was

0.2 and heterozygotes 0.6. The environmental gradient (B and G) was centered at spatial position 2 and the strength of selection was s = 4

(eq. 8). Heterozygote disadvantage (C and H) was h = 0.8 and disadvantage (D and I) s = 0.8. The Dobzhansky–Muller incompatibility was

determined by d = 0.8. In each case, the simulation was run for 50 generations (results are similar at 25 and 100 generations).
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lines in Fig. 1E) are indistinguishable from the no-selection

case (not shown).

An empirical example

To illustrate analysis of a real dataset, I used published data

from an expanding hybrid swarm formed in the 1940’s

when Barred Tiger Salamanders (Ambystoma tigrinum ma-

vortium) from Texas were introduced into California and

encountered the native California Tiger Salamander, A. cal-

iforniense (Fitzpatrick and Shaffer 2007b; Fitzpatrick et al.

2010). The dataset includes 773 salamanders from 58 sites

scored for 67 nuclear SNPs. Two of these SNPs are “ring-

ers” having no heterozygotes in the dataset because of tech-

nical problems with genotype scoring; they are included

here to assess the visibility of heterozygote deficits in geno-

mic cline analyses. Fitzpatrick et al. (2010) showed strong

evidence of genomic heterogeneity, with three markers

having introgressed 95 km further into the native range

than the rest (Fig. 4). Although this striking pattern is hard

to miss, overall the dataset is not well suited to geographic

cline analysis because there is an abrupt transition from a

hybrid swarm in the Salinas Valley, where breeding sites

vary widely in mean S without much relationship to

Figure 2. Genomic clines fitted to simulated data after 50 generations in the open hybrid zone model (same simulations as Fig. 1). Black lines

illustrate unlinked neutral markers; red lines illustrate selected markers.
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geographic distance, to essentially pure native populations

outside the Salinas Valley. That is the biological situation is

not well represented as a cline or series of clines between

geographic ranges of two parental forms. For similar rea-

sons, Machol�an et al. (2011) used Barton’s concordance,

INTROGRESS, and GENELAND to study patchy, long

distance introgression in the house mouse hybrid zone.

Genomic cline analysis offers a satisfying alternative with

potential to reveal important patterns of variation that

have not sorted out along a geographic gradient.

The data consist of individual diploid genotypes of

markers presumed to be diagnostic (based on analyses of

reference populations). Hybrid Ambystoma can have 0, 1,

or 2 introduced (A. t. mavortium) alleles. Analysis of non-

diagnostic markers will require an additional step relating

observed genotypes to allelic ancestrypi (Gompert and

Buerkle 2011).

I analyzed the data using the R-package INTROGRESS

(Gompert and Buerkle 2010), using their randomization

test (assuming negligible genetic drift since secondary

contact) to identify markers potentially linked to loci

affecting hybrid fitness. I also used the stand-alone pro-

gram bgc (Gompert and Buerkle 2012) to fit the spliced

Barton function and identify outliers using Gompert and

Buerkle’s (2011) univariate Bayesian method. Then I fit

each of the cline and regression models described here

Figure 3. Genomic clines fitted to simulated data after 50 generations in the open admixture model (otherwise same conditions as Figs. 1 and

2). Black lines illustrate unlinked neutral markers; red lines illustrate selected markers.
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and used multivariate outlier detection to identify candi-

date markers. Fitting was done using allele or genotype

counts and genome-wide average S per locality to account

for nonindependence of salamanders sampled from the

same breeding pond. Given the likely importance of

genetic drift over the past 60 years (20–30 generations), I

predicted that the outlier detection methods would be

more conservative than INTROGRESS.

Results

Simulated data

Testing the na€ıve null hypothesis

As expected for data influenced by genetic drift, the na€ıve

null hypothesis (pi = S) was relatively easy to reject for

neutral markers (Table 3). The parametric test in INTRO-

GRESS (Gompert and Buerkle 2009, 2010) flagged 99 to

100% of the markers in no-selection simulations as signif-

icantly deviating from the null hypothesis (Bonferroni-

adjusted critical P ≤ 0.05/100 = 0.0005), while their

permutation test was somewhat more conservative. For

comparison, I also tested the na€ıve null hypothesis using

traditional likelihood ratio tests for the fitted cline mod-

els; results were virtually identical to the Gompert and

Buerkle (2009) permutation test (Table 3). As expected,

detection rates increased with the influence of drift over

time and in closed populations (Table 3). These results

strongly caution against na€ıve null hypothesis tests

(assuming zero drift) for identifying candidate markers.

As pointed out by Long (1991) in a similar context, the

effects of selection and drift are confounded in these tests.
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Figure 4. Geographic cline analysis: Sigmoid clines fitted to

introduced allele frequencies at 67 diagnostic markers in the

California tiger salamander hybrid zone (Fitzpatrick et al. 2010). Red

lines and black symbols represent “superinvasive” markers. Open

circles show the genome wide average ancestry at each sample site.

Most markers do not asymptote to 1.0 on the left side because there

is no “pure” Barred Tiger Salamander region in California; they were

introduced patchily into native populations of the California Tiger

Salamander in the Salinas Valley.

Table 3. Numbers of neutral loci (out of 100) deviating from the naive null hypothesis (no-selection simulations only).

Simulation info. INTROGRESS Cline models

Str. Imm. Time N Param. Permut. Barton Beta Logit-logistic

AD Closed 10 935 99 23 26 26 26

AD Closed 25 1010 99 52 53 53 53

AD Closed 50 954 99 65 65 65 65

AD Closed 100 1018 100 74 73 73 73

AD Open 10 959 100 14 13 13 13

AD Open 25 957 100 22 21 22 21

AD Open 50 990 100 22 18 19 19

AD Open 100 966 100 27 23 23 23

HZ Closed 10 975 100 25 25 26 28

HZ Closed 25 986 100 56 58 62 60

HZ Closed 50 966 100 81 84 84 84

HZ Closed 100 1049 100 89 86 86 86

HZ Open 10 963 100 26 26 24 26

HZ Open 25 1014 100 52 49 51 48

HZ Open 50 1060 100 58 63 60 60

HZ Open 100 966 100 72 69 67 68

“Str.” is either the hybrid zone (HZ) or admixture (AD) model, “Imm.” is either closed or open to immigration from pure parental populations,

Time is the number of elapsed generations since secondary contact, N is the population size at the time of census, “Param.” and “Permut.”

refer to the parametric and permutation-based hypothesis tests in INTROGRESS (Gompert and Buerkle 2009, 2010). Numbers under the cline

models are counts of significant likelihood ratio tests of fitted models versus H0:pi = S. Critical values for all tests were Bonferroni adjusted

(P ≤ 0.05/100 = 0.0005).
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Goodness-of-fit

Comparing models strictly in terms of how well the fitted

curves correspond to the data, the Barton and beta clines

were often best (Table 4), but multinomial or binomial

regression were sometimes better in closed population

simulations. This is probably explained by the lack of

“pure” (S = 0 or 1) individuals anchoring the curves at

each end of the ancestry spectrum. Cline models always

fit best in open populations. The relative goodness-of-fit

tended to change over time since secondary contact, espe-

cially in the hybrid zone scenario, where the beta cline fit

best early on, but the Barton cline fit best in later genera-

tions when the hybrid zone was open to immigration,

and multinomial regression fit best in later generations

when the hybrid zone was closed (Table 4). Representa-

tive examples are illustrated in Figures 2 and 3.

Outlier detection

On the other hand, comparing models in terms of how

well they expose exceptional loci, the logit-logistic had the

best combination of precision (best ratio of true positive

to false positive results) and sensitivity (Table 5). The

Barton cline had the lowest sensitivity (it missed more

selected loci than any other model) and multinomial

regression had rather high false-positive rates (low

precision).

The impact of genetic drift on cline parameters and the

robustness of multivariate outlier detection are illustrated

in Figure 5. As expected in a closed hybrid zone, locus-

specific clines become increasingly variable over time.

Because outlier detection uses the empirical distribution

of parameter estimates, variation owing to drift alone did

not result in statistical outliers in this example. In the

example (Fig. 5), there are many loci at generations 50

and 100 that would be outliers if compared to the

distribution of clines at generations 10 or 25, but appear

statistically normal in their proper contexts.

Ambystoma hybrid swarm

The permutation test from INTROGRESS flagged 65 of

67 markers as deviating from the na€ıve null hypothesis

(Bonferroni adjusted critical P ≤ 0.05/67 = 0.00075).

Multivariate outlier detection using the fitted binomial

regression, logit-logistic cline, and beta cline models

flagged only the previously identified “superinvasive”

markers (cm6E11, cm12C11, cm23C6 Fig. 6). Analyses

Table 4. Goodness-of-fit of alternative models to simulated genomic clines.

Time Immigration Structure Multinomial Binomial Logit-logistic Beta Barton

10 Closed AD 19.22 34.17 7.83 12.67 26.11

25 Closed AD 18.56 33.67 8.78 13.89 24.89

50 Closed AD 18.44 30.17 8.94 14.89 26.28

100 Closed AD 18.89 26.94 10.28 14.61 25.72

10 Open AD 10.56 0.28 21.67 30.06 37.44

25 Open AD 10.56 0.39 20.67 30.61 37.78

50 Open AD 9.44 0.11 22.61 29.33 38.50

100 Open AD 10.22 0.67 22.33 30.89 35.89

10 Closed HZ 6.28 1.06 18.28 43.78 30.61

25 Closed HZ 12.06 4.83 16.11 39.17 27.78

50 Closed HZ 20.06 12.72 12.39 28.17 26.06

100 Closed HZ 31.78 11.94 9.83 16.67 26.44

10 Open HZ 6.67 0.06 21.50 40.06 31.72

25 Open HZ 3.50 0.67 21.28 40.94 33.61

50 Open HZ 2.33 0.50 23.78 36.72 36.67

100 Open HZ 2.39 0.44 23.56 35.22 38.39

Each number is the average percent of loci best fit by each model (according to AICc) across all simulations. Time is the number of elapsed gener-

ations since secondary contact, “Immigration” is either closed or open to immigration from pure parental populations, and “Structure” is either

the hybrid zone (HZ) or admixture (AD) model.

Table 5. Precision and sensitivity of outlier detection based on

alternative models fitted to simulated data.

Model Correct Missed False pos Precision Sensitivity

Barton 52 572 43 0.55 0.08

Beta 94 530 89 0.51 0.15

llogit 118 506 43 0.73 0.19

Logistic 117 507 57 0.67 0.19

Multinom 126 498 199 0.39 0.20

Tabulations include all simulations, each evaluated at four times

(10, 25, 50, and 100 generations). The total number of selected loci

(Correct + Missed = 624) includes all forms of selection across all

simulations (Table 2).
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with the Barton cline (using the Bayesian method of bgc

or my likelihood implementation in Hiest) failed to detect

cm12C11 as an outlier. Outlier detection using multino-

mial regression identified the three superinvasive markers

and the two “ringers” with no heterozygous genotypes.

Although the latter detections add nothing to our biologi-

cal knowledge of the example system, they do underscore

the unique ability of the multinomial regression approach

to describe genotype frequency variation.

Discussion

Comparative analysis of genomic clines yields important

insights into hybrid zones, admixture dynamics, and

genomic heterogeneity, particularly when geographic

clines are not applicable. Although the genomic cline

approach was first proposed over 25 years ago (Szymura

and Barton 1986), the approach has suffered from a lack

of alternative models, little information on expected

signatures of different kinds of selection, and no rigorous

method for identifying exceptional markers while

accounting for genetic drift (until Gompert and Buerkle

2011, 2012). I have addressed these problems by introduc-

ing the beta and logit-logistic cline models, simulating

hybrid zone and admixture dynamics to investigate the

effects of different kinds of selection on genomic cline

shape, and implementing a well-known multivariate out-

lier detection method (similar to Gompert and Buerkle’s

(2011) univariate approach). At least for the conditions

examined here, the logit-logistic cline model is the best

for identifying markers of interest.

The beta and logit-logistic cline models, introduced for

the first time here, overcome some theoretical shortcom-

ings of previous approaches. In particular, they appropri-

ately model the relationship between two proportions or

probabilities (variables defined only on the finite interval

[0,1]) and meet the constraint (imposed by the definition

of genomic ancestry) that ancestry probability for a given

Figure 5. Effects of genetic drift on genomic

cline parameters and multivariate outlier

detection. Data are from a simulation of the

closed hybrid zone model with strong

heterozygote disadvantage (h = 0.8). Black

lines and symbols represent 99 unlinked

neutral markers; red represents the selected

marker. The fitted logit-logistic model is

shown, but results were similar for other cline

models. The selected locus was a statistically

significant outlier in generations 25, 50, and

100. There were no significant outliers in

generation 10 (a = 0.0005). The line in each

Q–Q plot illustrates the expectation of equality

between empirical quantiles of the

mahalanobis distance (D2) and quantiles of the

v2 distribution with 2 degrees of freedom.
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locus must be zero or one (respectively) when the

genome-wide ancestry probability is zero or one (respec-

tively). The Barton cline model meets the latter con-

straint, but allowed the dependent variable to trespass

above one or below zero without ad hoc truncation

(Gompert and Buerkle 2011). Multinomial regression

properly models a dependent variable on [0,1], but

assumes the independent variable can stretch from

negative to positive infinity.

Although beta distributions can be used to model allele

frequency variation in structured populations (Balding

and Nichols 1995; Pritchard and Donnelly 2001), the beta

cline is phenomenological, as are the Barton cline and

regression approaches. In contrast, the logit-logistic cline

function arises from simple population genetic theory for

geographic clines (Bazykin 1969). It is interesting that the

logit-logistic was not commonly the best model for

describing data in terms of goodness-of-fit (Table 4). Per-

haps this is not surprising given that the simple geograph-

ically sigmoid model from which it was derived is

inaccurate when several loci affect fitness in the center of

a hybrid zone (Barton 1983; Baird 1995). In particular,

when several linked loci affect fitness, there is a “cou-

pling” effect where multilocus clines are steeper and more

coincident in the center of a hybrid zone (Barton 1983;

Baird 1995). This has been described as a “step,” where

the logistic function describing cline shape in the cline

center is discontinuous with more gradual “tails of

introgression” on either side (Barton and Bengtsson 1986;

Barton and Gale 1993). Further development is needed to

treat this, perhaps more realistic model. However, as a

practical matter, the logit-logistic was most effective for

identifying outliers caused by natural selection in my sim-

ulations (Table 5).

As for geographic clines, there is no one-to-one corre-

spondence between genomic cline shape and mode of

selection. For example, previous work showed that whether

heterozygote disadvantage or epistatic hybrid dysfunction

reliably cause sigmoid genomic clines depends on popula-

tion structure (the influence of dispersal and drift) in addi-

tion to selection intensity (e.g., Gompert and Buerkle 2011;

Gompert et al. 2012b). A few qualitative generalizations

are supported by those studies and the present results.

Selection against heterozygotes tends to steepen genomic

clines, while heterozygote advantage flattens them out.

Dobzhansky–Muller incompatibilities tend to generate

complementarily displaced pairs of clines. These might be

impossible to distinguish from displacement caused by

directional selection or an offset environmental gradient.

As noted for geographic clines (Barton and Gale 1993;

Kruuk et al. 1999), an environmental gradient can generate

clinal patterns indistinguishable from environment-inde-

pendent selection against heterozygotes. Finally, genomic

cline analysis is inherently relativistic; if many markers are

associated with fitness in similar ways, they will not be seen

as statistical outliers. Nevertheless, genomic clines provide

an excellent way to screen for exceptional loci, and joint

consideration of alternative cline forms offers valuable

perspective on hybrid zone dynamics and patterns of geno-

mic heterogeneity. Future work should incorporate these
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Figure 6. Logit-logistic clines fitted to the tiger salamander data (A),

and multivariate outlier detection (B and C). Red lines and symbols

represent the three “superinvasive” markers (Fitzpatrick et al. 2010),

which are the only statistical outliers.
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alternative functional forms with methods accounting for

uncertainty associated with nondiagnostic markers.
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