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ABSTRACT

BREEDING POND DISPERSAL OF INTERACTING CALIFORNIA RED-LEGGED

FROGS (RANA DRAYTONII) AND AMERICAN BULLFROGS (LITHOBATES

CATESBEIANUS) OF CALIFORNIA: A MATHEMATICAL MODEL WITH

MANAGEMENT STRATEGIES

Iris Acacia Gray

The invasion of American Bullfrogs (Lithobates catesbeianus) in the western United

States has had a direct negative effect on the persistence ofmany native fauna. Native ranid

frogs, in particular, face threats to their populations dueto the competition and predation

imposed by this behaviorally similar invader. The California Red-legged Frog (Rana dray-

tonii) has been listed as a threatened species since 1996 due in part to the introduction

of American Bullfrogs. A stage-based modeling effort has been developed for interact-

ing American Bullfrogs and California Red-legged Frogs within a single pond (Doubledee

et al., 2003). We modified and expanded this model to encompass several ponds by imple-

menting juvenile dispersal between them. Movement rules were created using assumptions

based in part on dispersal data collected for a California Red-legged Frog population within

eight specific ponds in the Marin County area. They incorporate the probability of the ju-

venile population being able to disperse a given distance and the probability of choosing

to move to a specific pond when several possibilities are present. We performed param-

eter studies for three unknown parameters: predation of tadpole and juvenile California

Red-legged Frogs by adult American Bullfrogs and predation/competition of overwintered

Bullfrog tadpoles on/with California Red-legged Frog eggs. This study provides combi-

nations of these rates which facilitate coexistence between these species over a specified

duration within the study ponds. Given a specific duration ofcoexistence (60 years) we

iii



explored the effect of bullfrog tadpole, metamorph, and juvenile/adult focused eradication

efforts as management strategies. The optimal rates of eradication associated with each

of these tactics benefiting California Red-legged Frog persistence were established. We

determined that seasonal ponds need not be managed, as they act as a refuge to the Cal-

ifornia Red-legged frog, and thus aid in its long term survival. We found that removing

at least75% of the American Bullfrog tadpole population every year or draining ponds

(100% Bullfrog tadpole eradication) at least every two years are sufficient strategies for

managing all permanent ponds to achieve population levels exhibited by seasonal ponds.

However, our model showed that without management permanent ponds connected (within

a predetermined dispersal range) to seasonal ponds were able to harbor some population of

California Red-legged frog beyond our assumed value of 60 years. Furthermore, we outline

the areas in which further research could be implemented to enhance our model.

Key words: California Red-legged Frog, American Bullfrog,stage-based model, dis-

persal, coexistence, management.
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INTRODUCTION

The decline of native frog populations has become a significant ecological problem through-

out western North America (Chatwin and Govindarajulu, 2006; Hayes and Jennings, 1986;

Alford and Richards, 1999). Explanations for their declineare plentiful and include, but

are not limited to, the effects of temperature, UV radiation, pesticides, habitat destruction

and/or fragmentation, competition, predation, and invasion of exotic species (Blaustein and

Bancroft, 2007; Blaustein et al., 2003; Franklin et al., 2002; Kats and Ferrer, 2003; David-

son et al., 2001; Alford and Richards, 1999; Blaustein and Kiesecker, 1998; Hayes and

Jennings, 1986). Evident in all of the studies that have explored these impacts is the need

for further data collection, research, and the expansion ofcurrent models.

In our work, we have chosen to model the effects of the invasion of an exotic species

(Lithobates catesbeianus, American Bullfrog) on a native species (Rana draytonii, Cali-

fornia Red-legged Frog) and its contribution to the declineof the native species, which

often results in serious ecological consequences (Alford and Richards, 1999; Hayes and

Jennings, 1986; Adams, 1999; Moyle, 1973). The California Red-legged Frog is of partic-

ular interest to conservationists, as it has been classifiedas a threatened species since 1993

through the Endangered Species Act (Doubledee et al., 2003;Blaustein and Kiesecker,

1998; Kiesecker and Blaustein, 1997; Zonick, 2005; Davidson et al., 2001; Moyle, 1973).

Although presence of predatory fish may be a greater threat tothe persistence of this na-

tive species, Bullfrog presence is also considered to have asignificant impact (Lannoo,

2005). Thus, obtaining a clearer understanding of the effects of bullfrog presence will aide

in determining what is needed to stabilize California Red-legged Frog populations.

The California Red-legged Frog ranges from southern California, along the coastline,

bounded by the Sierra Nevada mountain range, up to the southern region of northern Cal-
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ifornia; while the American Bullfrog is native to eastern North America (Lannoo, 2005).

California Red-legged Frogs and American Bullfrogs are ranid frogs, ortrue frogs, which

means that both species are similar in anatomy and physiology (Doubledee et al., 2003;

Zonick, 2005; Hayes and Jennings, 1986). They exhibit a complex life cycle with multiple

stages: egg, tadpole, metamorph, juvenile, and adult (Lannoo, 2005). Both species use

aquatic and terrestrial habitats throughout the course of their development (Lannoo, 2005).

Clearly, these species will have to compete with each other in the event they share a given

area.

Bullfrogs were first transported to the West Coast of North America from their native

East Coast around the time of the Gold Rush (mid 1800s) to satisfy the appetite of French

cuisine enthusiasts craving frog legs. Before the introduction of bullfrogs, Californians

were harvesting Red-legged Frogs from the wild in order to keep up with demand, until

they were all but completely eliminated (Jennings and Hayes, 1985; Hayes and Jennings,

1986). Since their introduction, bullfrogs have impacted the persistence of many native

species of frogs and other fauna by altering the structure ofthe ecosystems in which they

inhabit (Blaustein and Kiesecker, 1998). For instance, when an invasive frog species elim-

inates a native frog species, the natural predator for that native frog may try to prey upon

the invaders if the exotic has managed to take over the niche carved out by the native frog.

Whether or not the new inhabitant of that niche is able to become part of the diet of that

natural predator will determine the intensity to which the food web will be affected. Fur-

thermore, the eating habits and degree of proliferation of the invasive frog will determine

which lower trophic level species’ populations linger, dieout, or grow due to the lack of

control from the absent native frog predator (Herbold and Moyle, 1986).

The American Bullfrog has a significant size advantage over the California Red-legged

Frog (Doubledee et al., 2003). The Red-legged Frog averages2 to 5.25 inches in length
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while the American Bullfrog averages 4 to 8 inches (Lannoo, 2005). This greater size

allows the Bullfrog to produce more offspring and travel further distances than the Red-

legged Frog (Lannoo, 2005). Furthermore, Bullfrogs are opportunistic predators, devouring

anything that can fit into their large mouths (Govindarajuluet al., 2005). The average adult

Bullfrog could devour even the largest adult Red-legged Frog with little difficulty.

Eggs, tadpoles, and metamorphs of the California Red-legged Frog also face hardship

as a result of Bullfrog presence (Kiesecker and Blaustein, 1997). When these two species

share a pond, Bullfrog tadpoles are presented with little competition for nutrients, as Red-

legged Frog tadpoles are smaller in size and number (Kupferberg, 1997; Kiesecker and

Blaustein, 1997; Doubledee et al., 2003). This enables Bullfrog tadpoles to monopolize re-

sources within the pond, regardless of the fact that California Red-legged Frog clutches are

laid earlier in the year. Field experiments demonstrate that once Red-legged Frog eggs are

oviposited in their natal pond, they run the risk of being nibbled by the large overwintered

(survived in a permanent pond through the winter season) Bullfrog tadpoles (Kupferberg,

1997).

The only modeling effort to address the problem of California Red-legged Frog per-

sistence despite Bullfrog presence was put forth by Doubledee et al. (2003). The authors

developed a stage-based model that describes the complex life cycles of both species and

their interactions in a single pond. Doubledee et al. (2003)implemented simulations using

two coupled matrix equations to illuminate the effect of Bullfrog eradication efforts such

as tadpole removal via pond draining and shooting of adult frogs. Doubledee et al. (2003)

conclude that shooting adults alone would require an exorbitant amount of effort, and is

therefore not a feasible management strategy. Govindarajulu et al. (2005) performed an

empirical study on invasive bullfrog population dynamics on Vancouver Island and found

that culling bullfrogs at the metamorphic stage had the greatest impact in reducing their
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total population growth rate.

Doubledee et al. (2003) concluded that the next logical stepin the modeling process

would be to add a spatial component allowing movement between ponds with information

about habitat condition and complexity. In our extension ofthe Doubledee et al. (2003)

model, we are concerned primarily with space. Space is represented by discrete patches

which will represent the ponds that the frogs would use for breeding. We used telemetry

data collected by Fellers and Kleeman (2007) for the California Red-legged Frog over eight

ponds within Point Reyes National Seashore in Marin County,CA. We created movement

rules which allow the frogs of both species to disperse between these ponds based on the

pond’s proximity to other ponds, seasonality, population size, and also dependent on the

life history stage of the frogs themselves.

Since complete eradication of the American Bullfrog from non-native areas at this junc-

ture in its invasion would be monumentally lengthy, costly and realistically infeasible, it

would be in the best interest of wildlife managers to implement strategies for coexistence

(Manchester and Bullock, 2000; Hayes and Jennings, 1986). In the analysis of our new

model, we determine which of three management strategies tocontrol Bullfrogs (tadpole,

metamorph, and juvenile/adult focused eradictions) is most effective in terms of facilitating

coexistence between our study species in a multiple pond habitat.



METHODS

One Pond Model

The foundation of our model is taken from a dual stage-based model presented by Dou-

bledee et al. (2003). This model follows the life cycles of both the American Bullfrog and

the California Red-legged Frog as they co-habitate a singlepermanent pond. The num-

ber of individuals in eahc stage as a function of time is described by an equation. Over

both systems, each equation is discrete, updating every year of the simulation. Since both

species breed once a year, a discrete system is most appropriate for modeling both of these

species. For the sake of brevity, the California Red-leggedFrog will be referred to as CRLF

and the American Bullfrog will be denoted as bullfrog.

We updated the Doubledee et al. (2003) model with the intention of increasing its ac-

curacy. Their bullfrog system (composed of three equations, or stages) is smaller than the

CRLF system (composed of four equations, or stages). According to their model the bull-

frogs in the simulation reach adulthood earlier than CRLFs.Normally, bullfrogs take four

to five years to reach sexual maturity while the CRLF takes approximately two to three

years (Lannoo, 2005). Thus, we added two more equations to the bullfrog system, making

it a five stage system. This expansion of the bullfrog system also allows for a ‘fast track’

option to be incorporated for the first year tadpole stage so that individual tadpoles can en-

ter metamorphose in only one year (rather than two) if conditions in the pond are optimal

for larval development (Govindarajulu et al., 2005).

Based on the biology of the CRLF, we collapsed the two juvenile stages outlined in

the Doubledee et al. (2003) model into a single stage. When CRLF clutches are laid in

April, the only other stages that are present in the habitat are the second year juveniles and

adults; the first year juveniles do not reveal themselves until later that same year (about
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September to October). This led us to absorb the first year juvenile stage (as it is known

in the Doubledee et al. (2003) model) into the tadpole stage of the model (see our timeline

in Figure 1). Furthermore, since the census occurs during the birth pulse, we are only

concerned with modeling female frogs. This maintains the convention established by the

original model (Doubledee et al., 2003).

Figure 1: Timeline of a single clutch’s development from eggto adult for the California
Red-legged Frog and American Bullfrog.
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In accounting for all of these changes and additions, we introduce the following nota-

tion. We use the letterD (for draytonii) to represent our CRLF population, differentiating

the stages according to descriptive subscripts.DT represents the tadpole stage, the juvenile

stage isDJ , and the adult stage isDA. We use the letterC (for catesbeianus) to represent

the bullfrog population. Since bullfrog tadpoles usually overwinter, we have two tadpole

stagesCT1 andCT2. There are also two juvenile stages denoted byCJ1 andCJ2. Lastly, the

adult bullfrog population is represented byCA (see Table 1 for parameter names, explana-

tions, and values).

Parameter Definition Mean Parameter Reference Original Parameter/
Values Calculation

S1 CRLF tadpole and first year 0.00625 Doubledee et al. (2003) P1 · P2

juvenile survivorship Licht (1974)
S2 CRLF second year juvenile 0.4 Licht (1974) P3

survivorship
S3 CRLF adult survivorship 0.5 Licht (1974) P4

r CRLF fecundity (eggs/adult) 1,500 Jennings and Hayes (1994) r

P1 First year bullfrog tadpole 0.1 Cecil and Just (1979) S0

survivorship
P2 Second year bullfrog tadpole 0.02 Doubledee et al. (2003) S1

survivorship
Pft Fast track bullfrog tadpole 0.016 Govindarajulu et al. (2005) a42

survivorship
P3 First year bullfrog juvenile 0.26 Govindarajulu et al. (2005) a54

survivorship
P4 Second year bullfrog juvenile 0.32 Doubledee et al. (2003) S2

survivorship
P5 Adult bullfrog survivorship 0.65 Raney (1940) S3

b Bullfrog fecundity (eggs/adult) 4,000 Bury and Whelan (1984) b

γ Intraspecific attack rate on 0.02 Doubledee et al. (2003) γ

all bullfrog tadpoles
µ Intraspecific attack rate on 0.05 Doubledee et al. (2003) µ

all bullfrog juveniles
η Intraspecific attack rate on 0.033 Doubledee et al. (2003) η

CRLF tadpoles
∆t Time step (years) 1 Doubledee et al. (2003) ∆t

Table 1: Symbols and definitions for model parameters. All values were determined em-
pirically via field surveys conducted by each author or collection of authors.
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Figure 2: A direction graph showing the life cycles and interactions of our two focal
species. Parameter values are described in Table 1.

The fraction of bullfrog tadpoles that survive cannibalismis represented by

fCT1,2
= e−γCA(t)∆t (1)

whereγ is the attack rate of adult bullfrogs on conspecific tadpoles. The structure of this

function allows the survival of these tadpoles to be greaterwhen there are fewer adult frogs
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present. Similarly, the proportion of juvenile bullfrogs that survive intraspecific predation

is

fCJ1,2
= e−µCA(t)∆t (2)

whereµ is the attack rate of adult bullfrogs on conspecific juveniles. The fraction of CRLF

tadpoles which survive both interspecific and intraspecificpredation is:

fDT
= e−(ηDA(t)+αD1

CA(t))∆t. (3)

Finally, the survival of juvenile CRLFs from bullfrog predation is

fDJ
= e−αD2

CA(t)∆t (4)

whereαD1,2 are interspecific attack rates of the bullfrog on CRLF tadpoles and juveniles,

respectively.

In the Doubledee et al. (2003) model, there is no explicit interaction between the tadpole

stages of the two species. From previous work (Blaustein andKiesecker, 1998; Kupferberg,

1997; Kiesecker and Blaustein, 1997) we know that this interaction can be quite detrimen-

tal to the survival of the larval CRLF since large overwintered bullfrog tadpoles will not

hesitate to nibble on CRLF eggs. We model this interaction inthe same way that Doubledee

et al. (2003) modeled bullfrog adult predation, presented below:

fD0 = e−αD0
CA(t)∆t (5)

whereαD0 is the attack rate of bullfrog tadpoles on CRLF tadpoles. Ourcompleted matrix

equations for CRLFs and bullfrogs are presented below as equations 6 and 7, respectively.
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For ease of understanding, a direction graph which clearly shows all transitions and inter-

actions is provided in Figure 2.
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For simplicity, the unknown parametersαD0, αD1 , andαD2 are organized in an ordered

triplet: (αD0 , αD1 , αD2). We performed a parameter study on these unknowns and found

that depending on the choice of values for the entries of the triplet, the amount of time in

which we assume these species can coexist is determined for the system. We do this be-

cause it is still unknown to us how long these two species can coexist in this specific habitat.

We determined possible ordered triplets for 20, 40, 60, 80, 100, and 200 year coexistence

schemes (Figure 3). Figures 4(a), 4(b), and 4(c) show how theCRLF population responds

to different coexistence schemes based on different choices for the alpha triplet.
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Figure 3: Possible unknownα triplets for various coexistence scenarios. The color as-
signments represent points that allow that specific coexistence duration. For example, red
points representα triplets that lead to coexistence of more than 40 years but less than or
equal to 60 years.

Multiple Pond Model

We extend the one pond model to describe movement between ponds by incorporating

immigration and emigration terms that allow for movement ofanimals in a spatial configu-

ration of discrete ponds. We assume there are specific influences governing the movement

of these animals, namely proximity of the animal to other ponds, stage, and habitat quality.

We incorporate proximity information by using dispersal data for CRLFs at the Point Reyes
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Figure 4: Examples of the choice of alpha triplet determining the length of time in which
the species coexist. Here we only show the juvenile CRLF population (for simplicity) over
various durations of coexistence: (a) 20 years (b) 60 years (c) 100 years.
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National Seashore in Marin County, California (Fellers andKleeman, 2007, map shown in

Figure 5, data shown in Figure 6). These data allow us to calculate proportions of frogs that

move between ponds. Our movement rule encompasses an influence due to habitat quality,

uniquely designed for both species. Also, the stage of the animal plays a distinct role in the

choice of movement direction, given that there is a choice inmoving to several connected

ponds. We define ‘connected’ to mean within a predetermined dispersal range.

We assume that only the juvenile frogs in the simulation movebetween ponds. We

do this for two reasons: 1) juveniles have been observed to be‘the [main] dispersers’

among many ranid species (Lannoo, 2005) and 2) CRLFs and bullfrogs both exhibit high

philopatry (the tendency of individuals to return to their initial breeding pond to breed in the

future) (Fellers and Kleeman, 2007; Stinner et al., 1994). However, we recognize that there

are shortcomings with these assumptions. The data set (Fellers and Kleeman, 2007) was

collected via radio telemetry and due to the size of the transmitter, only adult frogs were

large enough to be fitted. Since juvenile CRLFs were not included in the study, we were

left to assume that juveniles move in a similar fashion as their adult counterparts. Juveniles

would probably move shorter distances than adults, but as the telemetry data are likely to be

an underestimate of this species dispersal capabilities, we contend that our use of this data

is reasonable. Furthermore, although the Fellers and Kleeman (2007) data show that adult

frogs indeed move, sometimes substantial distances, we assume these movements are made

to satisfy needs outside of the breeding season (to find food,basking sites, etc.). Because

of the suggestions of high philopatry, we assume that adult frog movements outside of the

census (i.e., during the breeding season) and are thereforeinconsequential for our purposes.

As far as the simulation is conserned, the adults appear not to move at all since we are only

interested with where they end up at the time of the census, inwhich we assume they always

return to their initial breeding pond. The purpose of the movement rule then becomes a
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Figure 5: Map of Point Reyes National Seashore and Golden Gate National Recreation
Area of Marin County, California. Marked areas represent study sites where dispersal data
for the California Red-legged Frog were collected by Fellers and Kleeman (2007).

mechanism for juvenile frogs to find a place where they will breed in the future.

The dispersal data (Figure 6) collectively exhibits the shape of a decaying exponential

function. Due to this observation, and in order to use these data to extract proportions of

moving frogs based on distance, we use gamma distributions.A gamma distribution can

exhibit a variety of shapes, one of which resembles a decaying exponential function not

unlike the shape of our dispersal data. We fit these data to a gamma distribution using

maximum likelihood (Rice, 1995). This was done using a Matlab code calledgamfit.m
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Figure 6: Histogram of dispersal distance data for CRLFs along the Point Reyes National
Seashore and Golden Gate National Recreation Area of Marin County, California, collected
by Fellers and Kleeman (2007).

taken from Matlab’s statistics package. We simply fed the dispersal data into the routine

and it produced parametersα andβ associated with gamma distributions. Theα parameter

describes the shape of the curve produced (by the gamma distribution) while theβ param-

eter determines the scale. Assuming similar dispersal behavior, theα parameters are the

same for each species, while theβ parameter is different from the calculated value for the

bullfrog gamma distribution, allowing for a ‘longer tail’.We must do this because dispersal

data of the same ilk for the bullfrog do not exist to our knowledge. An example
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Figure 7: A gamma distribution that emulates the CRLF dispersal distance data histogram.
Note that the largest distance value is very close to the maximum distance of 1409 meters
recorded in the Fellers and Kleeman (2007) data set.

of a gamma distributed curve created for CRLFs is displayed in figure 7, and one for the

bullfrog is shown in figure 8.

The gamma distribution is used to calculate the proportion of a population that is able

to move a given distance. For example to caclulate the proportion of the population that

can at to 200 meters, we find the area under the gamma distribution to the distance of 200

meters. That area represents the proportion that can moveup to 200 meters, so in order

to find the proportion that can move 200 meters or more, we calculate the compliment of
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Figure 8: A gamma distribution, based on the shape of the CRLFgamma distribution,
that estimates bullfrog movement. Note that the largest distance value is very close to the
maximum distance of 1600 meters recorded in the work of Marshand Trenham (2001).

the aformentioned proportion (i.e., 1 - proportion moving up to 200 meters). An illistration

showing the area that represents the proportion caclulatedfor this specific example is shown

in Figure 9. For each distance, there is associated with it a proportion of the population

moving from pondi to pondj (calledri,j) which we store in the matrixR.

In order to find the fraction of populations dispersing between and two ponds, we used

distances between the eight sites that were part of the Fellers and Kleeman (2007) study.

The straight line distances between each of the were measured in meters using Google
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Figure 9: An example of calculating the proportion of dispersing frogs using a gamma
distribution. The red area the proportion of individuals that could travel a distance of at
least 200 meters. In this case,38.76% of the bullfrogs in this particular pond are able to
move that specified distance.

Maps (Figure 5) and stored in a distance matrixM (Equation 8). In this matrix the row

number is the current pond location and column number is the destination pond location.

For instance, the distances between pond eight (pond BL) (see Table 2 for pond numbers)

and any other pond can be found in the eighth row. The first column entry of the eighth row

is the distance between ponds one (pond TP) and eight (pond BL). Similarly the distance

between ponds eight and two (pond AD) is the second column entry of the eighth row and
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would be denotedm8,2. Note that the diagonal values ofM are zero, since every pond has

a zero distance from itself (mi,i = 0|i = 1, 2, . . . , 8), and the matrix is symmetric, i.e.,

mi,j = mj,i.

Pond Name Pond Number Hydroperiod
TP 1 Seasonal Seep and Ditch
AD 2 Seasonal Pond
WD 3 Permanent Pond
CP 4 Permanent Pond
OT 5 Permanent Pond
MP 6 Seasonal Pond
BF 7 Seasonal Pond
BL 8 Permanent Marsh

Table 2: Numeric assignments for our eight study ponds. Names and hydroperiods taken
from Fellers and Kleeman (2007).
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(8)

We have two distinct ways of creating matrixR: deterministically and stochastically.

In the deterministic version, we assume that the populationsizes of each species among the

ponds have no effect on the pattern/frequency of dispersal between ponds. In this case, the
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gamma distribution used is exactly fitted to the data. Only one gamma distribution for each

species (Figures 7 and 8) will be used to create matricesRD andRC , respectively. Note

that eachR matrix is symmetric (i.e., the probability of movement is the same whether

individuals are moving from pondi to pondj or from pondj to pondi).

In the stochastic version, we assume that the population sizes of each pond influence the

rate of movement between the ponds. For this simulation, a distinct set ofni (population

size at pondi, rounded to the nearest integer) gamma distributed random numbers are

generated. In this case, a larger population means that there is an increased likelihood of

individuals dispersing further distances whereas in the deterministic model, the fraction of

the population that is able to move a given distance if fixed, reguardless of the populaton

size. Since each proportion is calculated from distinct collections of gamma distributed

random numbers, the matrixR for the stochastic version may be asymmetric and unique

for every time step.

With the absence of concrete data that clearly support a connection between habitat

quality and survival, we assume that hydroperiod (length oftime, or seasonality, that wa-

ter is present over the surface of the landscape) will represent the influences of survival

due to habitat quality for the bullfrog. The hydroperiod foreach pond is provided in the

study from which we take our dispersal distance data (Fellers and Kleeman, 2007, Table

2). We do this because although there are other influences which describe habitat quality

(e.g., pond temperature, depth, surface area, amount of emergent vegetation, etc.) these

attributes are so highly correlated with the hydroperiod ofthe pond that we assume they

are incorporated within this characteristic. We allow for two possible hydroperiods in our

study: permanent and seasonal. We assume that overwinteredbullfrog tadpoles can only

survive in permanent ponds. We reflect this phenomenon in ourmodel by initializing all

permanent ponds with null bullfrog populations and eliminating any overwintered tadpoles
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which have been deposited in seasonal ponds by immigrant breeding adults every year. We

further assume that CRLFs can survive in either permanent orseasonal habitats.

Hydroperiod also effects the movement of the bullfrog. We assume second year juvenile

bullfrogs avoid dispersing to seasonal ponds considering that they had the previous year to

become knowledgeable about their landscape (see equation 9). However, first year juvenile

bullfrogs do not have this information and therefore blindly choose to move between any

pond within their dispersal range (see figure 10).

δ
C,quality
ij =







1 if j is permanent

0 if j is seasonal
(9)

We have also implemented an indicator of habitat quality forthe CRLF as well. When

juvenile CRLFs emerge from their natal pond, they have no information available to them

than what they see at their current location. We thus assume that the density of the adult

bullfrog population at that pond influences whether or not the juvenile CRLFs will move out

of the pond. We designed this probability so that the higher the adult bullfrog density, the

more likely CRLFs are to leave that pond for, hopefully, a pond with a smaller population

of bullfrogs (see equation 10). Thus, the probability of movement of CRLFs out of pondi

to any connected pond based on the adult bullfrog density is as follows:

δ
D,quality
i = 1 −

1

CAi

. (10)

We assume the two stages of juvenile frogs present in our model have distinct modes

of choosing between several connected ponds. The first year juvenile bullfrogs (and the

sole juvenile stage for CRLFs) have just emerged out of the pond, completing their meta-

morphosis. We thus assume they have no directional preference. Should individuals of this
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stage choose to move out of their current pond, we assume it isequally probable for them

to move toward any given connected pond (for clarification, see figure 10). On the other

hand, second year juvenile bullfrogs have had a chance to absorb information about the

landscape (i.e., the distances between all connected pondsin the area). We then assume

that the distances between the connected ponds play a role inthe choice they make on

which pond they decide to move to, if they move at all (see figure 11).

Figure 10: Example of juvenile CRLF and first year bullfrog movement choice probabili-
ties. Note that all choice probabilitiesρ1st are the same.
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Figure 11: Example of second year bullfrog movement choice probabilities. The pair of
ponds which encompasses the shortest distance (in this case, the distance between ponds B
and C) will have associated with is the highest choice probability, ρ2nd

CB . In this illustration,
we are assuming that all ponds are permanent so our second year juveniles would not avoid
any ponds via the habitat quality component of our movement rule.

We now have a new model which has its foundation from our one pond model, only

now immigration and emigration terms are added to and subtracted from it, respectively.
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Management

Since our choice of coexistence scheme assumes the CRLF cannot continue to survive

in a single pond without management, we can use our model to investigate the efficacy

of various management strategies for the benefit of this threatened species. We recognize

many different management strategies to deal with nuisancebullfrogs (Govindarajulu et al.,

2005; Doubledee et al., 2003; Moyle, 1973). We entertain three methods of management of

bullfrogs: tadpole focused, metamorph focused, and juvenile/adult focused management.

These strategies are implemented in the model by simply reducing the survival rates associ-

ated with the stages being targeted for eradication by increments of5%. For instance, when

we implement the tadpole focused scenario, the survival rates of the pond bound stages of

bullfrog are adjusted to whichever percentage of removal welike.

We ran our simulations to 200 years implementing a specific strategy every year, and

averaged the population sizes from only the last 100 years inorder to exclude any tran-

sient behavior present in the beginning of the simulation run. We compared the average

population sizes and variances over several, equally lengthy ranges of time (100-200 years,

150-250 years, 200-300 years, etc.) and found the differences between the average popula-

tion sizes and variances of all time ranges investigated to be insignificant, thus we kept our

time frame between 100-200 years. The populations described in all figures for the Results

section will be limited to the CRLF juvenile population, forthe sake of brevity.

Since projects may be limited by funding, we investigate theeffect that skipping man-

agement from one to 15 years in a row has on the average juvenile CRLF population. We

assume that every year the management is implemented, it is done at a fixed rate of100%

eradication for whichever stage of bullfrog is the focus of the effort. Again, we run the

simulation for 200 years and average only the later 100 years.
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Deterministic Model

We eliminated ponds TP and BF from our results because they are disconnected (i.e., be-

yond dispersal range) seasonal ponds. These characteristics made the ponds devoid of

bullfrogs, since we do not initialize this species in seasonal ponds and the disconnection

made colonization impossible in our simulation. Furthermore, the fact that these ponds

are not connected to any other made for a constant time seriesfor the bullfrog while the

CRLF reached a steady state. Although this is an important result, showing that CRLFs

can flourish when bullfrogs are absent, it only adds unnecessary clutter to our results.

The bullfrog populations over all stages and locations reach a steady state by about

the20th year (Figure 12). Ponds AD and MP are seasonal, and this seasonality constantly

wipes out the second year bullfrog tadpole population and thus lead to smaller bullfrog

populations overall. However, the first year juvenile stageat those seasonal ponds actually

have larger populations when compared to permanent ponds. We attribute this to the effect

of nearby permanent ponds (WD, CP, and OT) feeding relatively high volumes of first year

juvenile frogs into these seasonal ponds, since they do not yet discriminate these ponds by

their hydroperiod when deciding where to move.

On the other hand, the CRLF populations settle at very low population sizes in the

permanent ponds, and even die out by year sixty in pond BL (Figure 13). We are able

to control this phenomenon by choosing our alpha triplet (described in Methods) to be

(αM0, αM1 , αM2) = (0.00003, 0.001, 0.0008) which forces a 60 year coexistence scheme.

For the sake of consistency and brevity, we will keep the alpha triplet at this value, assuming

a 60 year coexistence between species, for the remainder of this work, unless specified

otherwise. Since BL is a disconnected permanent pond, the resulting time series for the
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CRLF has exactly the same dynamics as the single pond simulation shown in figure 4(b).

Due to this observation, we determined that the other permanent ponds are able to have

persistent CRLF populations due to dispersal from connected seasonal ponds, which act as

a refuge for this species.
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Figure 12: Deterministic simulation result for the bullfrog.
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Figure 13: Deterministic simulation result for the CRLF. Assuming a 60 year coexistence
in a single pond, we see how CRLFs carry on for the first 200 years of the multiple pond
simulation.

Stochastic Model

In this version of the model, we assume the present population size of the pond aides in

determining the proportion of moving individuals out of said pond. This allows the gamma

distributed histograms from which we calculate our proportions of moving individuals to

change with time. Figures 14 and 15 show a 200 year time seriesof both species as they

interact within our six ponds. Notice that the behavior of the stochastic version is qualita-



29

tively similar to the deterministic version, and in the caseof pond BL, the two versions are

exactly the same since no movement occurs in or out of that pond. Furthermore, the pop-

ulation sizes of adult and juvenile CRLFs in ponds AD and MP (our two seasonal ponds

that act as refuge for CRLFs) are higher in the stochastic version than the deterministic

version. The stochastic version has the advantage of allowing for variability in the volumes

of moving individuals with time, which is closer to what we would expect in the natural

world. For this reason, we use the stochastic version of the model for the remainder of our

results, which are composed of all our management scenario simulations.
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Figure 14: Stochastic simulation result for the bullfrog.
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Figure 15: Stochastic simulation result for the CRLF.

Management

For Figures 16, 17, and 18 we see what the effect of removing0−100% (at5% increments)

of bullfrog tadpoles, metamorphs, and juveniles/adults, respectively, has for the average

juvenile CRLF population (with error bars) within each pond. These results illuminate the

amount of effort required to effectively manage each specific pond. Figures 19, 20 and 21

show the effect on the average juvenile CRLF population of implementing our strategies

full force (100% eradication) every year, every other year, every two years,etc., up to 15
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years between management events. Given that funding is not always available from year

to year, these results allow us to see whether each management strategy has any lasting

effects.
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Figure 16: Bullfrog tadpole focused eradication over various proportions of removal. Sea-
sonal ponds are relatively unaffected by bullfrog management. In order to manage the per-
manent ponds effectively (i.e., have their population sizes match those of seasonal ponds
when0% of bullfrog tadpoles are removed) at least75% of bullfrog tadpoles must be elim-
inated every year. Note that for all remaining figures, the seasonal ponds’ averages are
denoted by an ‘o’ while the permanent ponds’ averages are marked with an ‘x’.
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Figure 17: Bullfrog metamorph focused eradication over various proportions of removal.
Seasonal ponds need not be managed. This type of management requires at least90%
removal of newly metamorphed bullfrogs from permanent ponds every year in order to
sustain healthy CRLF populations. Note that for all remaining figures, the seasonal ponds’
averages are denoted by an ‘o’ while the permanent ponds’ averages are marked with an
‘x’.
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Figure 18: Juvenile/Adult bullfrog focused eradication over various proportions of removal.
Seasonal ponds act as a refuge for CRLFs and do not require management. Permanent
ponds WD and OT cannot be managed effectively via this strategy, even when100% of
juvenile and adult bullfrogs are taken. However, permanentponds CP and BL can maintain
healthy CRLF populations so long as at least50% of terrestrial bullfrogs are removed. Note
that for all remaining figures, the seasonal ponds’ averagesare denoted by an ‘o’ while the
permanent ponds’ averages are marked with an ‘x’.
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Figure 19: Skipping years between bullfrog tadpole focusederadication efforts. Undoubt-
edly, continuous management has the best result for the average juvenile CRLF populations
of any pond. A clear divergence between average juvenile CRLF population sizes among
seasonal and permanent ponds occurs when skipping three or more years in a row between
management applications. Note that for all remaining figures, the seasonal ponds’ averages
are denoted by an ‘o’ while the permanent ponds’ averages aremarked with an ‘x’.
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Figure 20: Skipping years between bullfrog metamorph focused eradication efforts. Skip-
ping any years between management events has the same effectas not managing the ponds
at all. Note that for all remaining figures, the seasonal ponds’ averages are denoted by an
‘o’ while the permanent ponds’ averages are marked with an ‘x’.
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Figure 21: Skipping years between terrestrial bullfrog focused eradication efforts. As ex-
pected based on the results shown in Figure 18, the average juvenile CRLF populations at
ponds WD and OT cannot be managed properly using this strategy. However, ponds CP
and BL can have up to three years skipped between eradicationefforts, so long as100%
of terrestrial bullfrogs can be eliminated. Note that for all remaining figures, the seasonal
ponds’ averages are denoted by an ‘o’ while the permanent ponds’ averages are marked
with an ‘x’.



DISCUSSION

Deterministic and Stochastic Versions of the Model

Both deterministic and stochastic model versions incorporated more realistic assumptions

about the life cycles of the two species than previous work byDoubledee et al. (2003).

We modeled dispersal based on telemetry data of CRLFs (Fellers and Kleeman, 2007).

The movement rules are distance-dependent for both the stochastic and the deterministic

model. The proportion of the population that can travel a certain distance is calculated in

a density-dependent way in the stochastic model. In the deterministic case, the gamma

distribution is fixed and the population size has no effect onthe number of animals which

disperse specific distances. Furthermore, movement rules among both versions included

species-specific habitat quality effects and stage-based differentiation of pond choice by

bullfrog juveniles when several ponds are within dispersalrange.

The deterministic version of our model produced intuitive results and showed that sea-

sonal ponds act as a refuge for CRLFs. As expected, in the isolated seasonal ponds (re-

moved from figures to simplify results) bullfrogs were not present and in isolated perma-

nent ponds, CRLFs died out at the predetermined time (in our case, at year 60). Through

dispersal, connected seasonal ponds act as a refuge allowing longer coexistence than would

be possible in one pond. The refuge effect has been investigated before and it is known to be

an important factor in facilitating the survival of rare andthreatened species (summarized

by Edelstein-Keshet, 1988).

The stochastic model contains all of the features of the deterministic model with added

variablity. The incorporation of density dependence in thestochastic model’s movement

rule enabled us to see extinction and re-colonization events (e.g., see pond CP’s trajectory

around year 80 in Figure 15). The structure of the stochasticversion allows for a greater
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likelihood of longer dispersal events when populations arelarger. We see higher average

CRLF population sizes for all stages in all study ponds in thestochastic model than the

deterministic model. The importance of incorporating these factors led us to continue using

the stochastic model when implementing our management strategies.

In their paper, Doubledee et al. (2003) derive an analyticalexpression that shows when

coexistence is guaranteed. The expression sets a bound on the sum of the bullfrog attack

rates on CRLFs in terms of the other model parameters, indicating that coexistence occurs

between these species when bullfrog predation is limited. We were able to find a connection

between coexistence and our attack rates (α triplet) numerically. According to the choice

of α triplet, specific durations of coexistence within one pond can be chosen. Furthermore,

with the expansion of our one pond model to several ponds, andallowing dispersal between,

we found that coexistence can be achieved in connected pondsdespite the fact that theα

triplet predicted a clear end to the CRLF populations in a single pond.

Tadpole Focused Eradication

For the seasonal ponds, removing bullfrog tadpoles has little effect on the average juvenile

CRLF population and, given that funds for such management may be low, may be skipped

altogether. We attribute this phenomenon to the fact that the bullfrog tadpoles are already

being eradicated via the drying of these ponds every year. However, in the permanent

ponds,≈ 75% eradication of bullfrog tadpoles is needed to bring CRLF juvenile popula-

tions up to the standard set by the seasonal ponds when no management is implemented.

Implementing the management every year obviously gives thebest result; every pond’s

average CRLF population is at its optimum (Figure 19). Skipping two years between erad-

ication efforts is the next best choice according to the averages presented. However, the
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variance for the two year skip scheme is quite large. Skipping one year has less variance

but the averages are lower. One might argue that skipping oneor two years has qualita-

tively similar results. Although the two year skip scenariohas the larger average, one will

more often encounter ‘bad years’ (when compared to the one year skip scheme) since the

variance is so high. Always, our goal is to try to lift the permanent pond’s populations up

to as close to the level of the seasonal pond’s population sizes as possible. Skipping one or

two years for this strategy appears to be reasonable, although skipping two years is clearly

more risky. Skipping three years in a row enacts a clear divergence in the average CRLF

population sizes between seasonal and permanent ponds, andthus we do not recommend

skipping more than two years in a row.

Metamorph Focused Eradication

For the metamorph focused eradication scenario as well, wildlife technicians could get

away with not managing the seasonal ponds, as they act as a refuge for the CRLF. However,

in order to match the unmanaged seasonal ponds in average juvenile population size, the

permanent ponds would have to have at least90% of their metamorphic bullfrogs removed

as they emerge from ponds after metamorphosis. Clearly, no years can be skipped if this

is the chosen avenue of management (see figure 20). We feel that due to the high volume

of eradication needed, the fact that bullfrog tadpoles do not often finish metamorphosis

at the same time (Collins, 1979), and that implementation must happen every year to be

worthwhile, we find this strategy to be relatively ineffective.
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Juvenile/Adult Focused Eradication

With this strategy, different ponds require different levels of management. The two seasonal

ponds require nothing in the way of eradication, as we have seen with the other strategies.

However, there seem to be two different groups of permanent ponds. Ponds CT and BL

are managed suitably by eradicating at least50% of terrestrial frogs, while ponds WD

and OT cannot, even if100% of the terrestrial bullfrogs are eradicated. We attribute this

to the way events are ordered within the simulation. The eradication effort should occur

while the bullfrogs are at their breeding areas ensuring thehighest volume of removal. The

frogs in the simulation are breeding before they are being eradicated, which is certainly

a reasonable assumption when considering the reality of implementing this strategy. This

phenomenon allows for the perpetuation of future generations even if all breeding adults

are eventually taken. Furthermore, ponds CT and BL share a geographical feature that

aids in their manageability. They are both connected to seasonal ponds. First year juvenile

bullfrogs are traveling to these seasonal ponds only to be removed before they have the

ability to move to a permanent pond as a second year juvenile in order to breed as an adult.

When skipping years between implementations of this strategy, results are similar as

when we do not skip any years: ponds WD and OT maintain lower averages. Skipping

one year has little effect on the averages of any pond. Pond BLcan have up to two years

skipped in its management without changing the pond’s average population (see figure 21).

Conclusions

Based on the results of our simulations, seasonal ponds do not require management since

average juvenile CRLF populations were found to be sustainable. Tadpole focused eradica-

tion is effective for managing all permanent ponds so long aseither at least75% of bullfrog
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tadpoles are removed every year or that all bullfrog tadpoles are removed (via draining the

pond, perhaps) at least every two years. Some ponds (CT and BL) were found to be man-

aged sufficiently via terrestrial frog removal. However, itmay be cumbersome to determine

the size of the terrestrial frog population and, perhaps more importantly, detect if at least

50% of them have been removed.

We are aware of two works (Govindarajulu et al., 2005; Doubledee et al., 2003) which

deal specifically with contolling invasive bullfrogs. Govindarajulu et al. (2005) suggest

that the best way to control bullfrog populations is to cull metamorphic bullfrogs every

year, which we found to be the least effective approach. On the other hand, Doubledee

et al. (2003) contend that removing tadpoles in conjunctionwith taking adult bullfrogs via

shooting is the best strategy for invasive control. We did not test the combination of these

strategies (addressed in Future Work), and therefore cannot make any comparison at this

time. We were able to conclude that removing at least50% of terrestrial bullfrogs in ponds

CT and BL was an effective means of control for those permanent ponds only. However,

since the strategy did not work for all permanent ponds, we cannot recommend this strategy

overall. Practicality of this strategy may also pose a problem to managers. Doubledee

et al. (2003) acknowledge that removing adults requires an exorbitant amount of effort and

therefore may not be a feasible strategy on its own. Since terrestrial frog removal would

require a possibly extensive search effort, we find it to be impractical relative to the tadpole

eradication strategy, which is bound spatially by ponds.

Based on our results and the reality of the problem we offer two avenues of bullfrog

management: 1) annually removing at least75% of bullfrog tadpoles from permanent

ponds, or 2) draining permanent ponds (removing100% of bullfrog tadpoles) at least every

two years. So long as recommendation 2) is done after CRLF tadpoles have all finished

metamorphosis, one can be sure that all bullfrog tadpoles are removed and that no CRLFs
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are harmed. Furthermore, an added bonus would be that any predatory fish would be re-

moved as well.

Future Work

Over the course of this project, we discovered several ways in which the model could

be refined. We found that habitat quality can be described by much more than just the

hydroperiod of the pond. Characteristics such as pond depth, average water temperature

during the breeding season, and amount of emergent vegetation are excellent indicators of

the quality of the habitat and would play a role in the choice of a future breeding pond made

by second year juvenile bullfrogs. Furthermore, the hydroperiod of ponds is not often as

cut and dry as ‘seasonal’ or ‘permanent’. Often times, pondswill have hydroperiods that

exhibit both: drying up two years in a row and not drying up thethird year, for example. A

more dynamic hydroperiod index could be incorporated to reflect this phenomenon.

We chose to implement our movement rule under the notion thatjuvenile frogs are the

primary dispersers among all life stages (Lannoo, 2005), and therefore enabled only those

individuals to disperse. We translated the notion of high philopatry exhibited by these

species to mean that adults will return to their breeding pond every year, although they may

migrate to other ponds throughout the year to meet their needs (Semlitsch, 2008). Since we

were only concerned with where frogs are located during the census (which occurs during

the beginning of the birth pulse) adults movements outside the census are inconsequen-

tial. The data (Fellers and Kleeman, 2007) were collected using telemetry and thus only

included adult frogs due to the heft of the transmitter. Withadvancements in technology,

perhaps future projects will be able to track the dispersal of juvenile frogs and thus more

appropriate data could be incorporated.
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The design of certain elements of our movement rules (i.e., juvenile stage-specific

choice probability and species-specific habitat quality indicators) was created in an entirely

theoretical realm. Not having hard probabilities for such phenomena led us to theoretical

estimates to describe these events. With the continuation of field research on these species,

these parameters may be uncovered. In that event, our model could be greatly strengthened

by their inclusion.

In our model, we simplified the survival and interaction ranges put forth by Doubledee

et al. (2003) and Govindarajulu et al. (2005) by using only the published values (see Table

1), which are the averages among the ranges. Stochasticity could be implemented into these

rates which would reflect the variability implied by the range of possible values.

We investigated our management strategies by implementingone stage-focused erad-

ication effort at a time over all ponds. Combining the strategies every year or switching

between strategies from year to year may be more effective than simply sticking to one

method season after season. Depending on the effectivenessof certain combinations, per-

haps more years can be skipped between management events.

A specificα triplet was chosen to control the coexistence duration for our management

simulations. Not having this information, we chose a duration (60 years) that seemed

appropriate. When it is known how long these two species can coexist in a shared habitat,

a perhaps more appropriateα triplet can be chosen which may or may not change the

management decision. To conclude, even if these results arenot exactly accurate due to

our choice of theα triplet, this project has nonetheless exercised the methodof appropriate

model design. We have learned from this work that ecologically significant information

can be collected in order to construct a model which producesresults that enable us to

decide the best course of action toward sustaining a threatened amphibian species despite

the invasion of an adaptable competitor/predator based on the best available science.
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APPENDIX

Here we provide the reader with our simulation codes. Each individual code begins and

ends with an entire line of%s.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code creates possible alpha triplets based on what coe xistance

% scheme we are shooting for. Call AlphaTripletsFigure.m af terward to

% create the figure for it.

% Number of ponds.

nponds = 1;

% Initial conditions.

u = [4956 42 4];

v = [9158 754 68 16 4];

% Here we initalize a zero vector of the appropriate size that is of a form

% that is easier to work with later on.

draytonii = zeros(nponds * 3,1);

catesbeiana = zeros(nponds * 5,1);

% Now we throw in the inital conditions.

draytonii(:,1) = u;

catesbeiana(:,1) = v;

% Turning the row vector into a column vector.

draytonii(:,1) = draytonii(:,1)’;

%catesbeiana(:,1) = catesbeiana(:,1)’;

% Creating zero matrices.

D = zeros(nponds * 3,nponds * 3);

C = zeros(nponds * 5,nponds * 5);

% Number of timesteps in the simulation.

nsteps = 200;

47
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% Parameters

p1 = 0.025; p2 = 0.25; p3 = 0.4; p4 = 0.5; r = 1500;

s1 = 0.1; s2 = 0.02; sFT = 0.016; s3 = 0.26; s4 = 0.32;

s5 = 0.65; b = 4000; gamma = 0.02; mu = 0.05; eta = 0.033;

% The alphaVector holds all the possibilities of values of al phaM0,M1,M2

% that we are willing to test.

alphaVector = [0.05 0.04 0.03 0.02 0.01 0.009 0.008 0.007 0.0 06 0.005

0.004 0.003 0.002 0.001 0.0009 0.0008 0.0007 0.0006 0.0005 0 .0004 0.0003

0.0002 0.0001 0.00009 0.00008 0.00007 0.00006 0.00005 0.00 004 0.00003

0.00002 0.00001];

for p = 1:32

for q = 1:32

for o = 1:32

alphaM0 = alphaVector(p);

alphaM1 = alphaVector(q);

alphaM2 = alphaVector(o);

for i = 1:nsteps

for j = 1:nponds

% Assigning the constant entries.

D(j * 3-2,3 * j) = r * p4;

D(3 * j,3 * j) = p4;

C(j * 5-1,j * 5-2) = s3;

C(j * 5,j * 5) = s5;

C(j * 5-3,j * 5-4) = s1 * exp(-gamma * catesbeiana(5 * j,i));

C(j * 5-4,j * 5) = b * s5 * exp(-gamma * catesbeiana(5 * j,i));

end

% Assigning the function entries.

for j = 1:nponds

D(j * 3-1,j * 3-2) = p1 * p2* exp(-eta * draytonii(3 * j,i)-alphaM1 *

catesbeiana(5 * j,i)-alphaM0 * catesbeiana(5 * j-4,i));

D(j * 3,j * 3-1) = p3 * exp(-alphaM2 * catesbeiana(5 * j,i));
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C(j * 5-2,j * 5-4) = sFT * exp(-mu * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-3) = s2 * exp(-mu * catesbeiana(5 * j,i));

C(j * 5,j * 5-1) = s4;

end

% Here we step from one year to the next.

draytonii(:,i+1) = D * draytonii(:,i);

catesbeiana(:,i+1) = C * catesbeiana(:,i);

% This ensures that we do not deal with (or see in the figures)

% negative numbers of frogs.

neg_d=find(draytonii<0); draytonii(neg_d)=0;

neg_c=find(catesbeiana<0); catesbeiana(neg_c)=0;

end

% Here’s where we collect our data for each simulation run.

if draytonii>1

fid = fopen([’alphaM0_’ num2str(nsteps) ’.dat’ ],’a’);

%fprintf(fid, ’%3.6f ’, i)

fprintf(fid, ’%3.6f ’, alphaM0);fprintf(fid,’\n’);

fclose(fid);

fid = fopen([’alphaM1_’ num2str(nsteps) ’.dat’ ],’a’);

%fprintf(fid, ’%3.6f ’, i);

fprintf(fid, ’%3.6f ’, alphaM1);fprintf(fid,’\n’);

fclose(fid);

fid = fopen([’alphaM2_’ num2str(nsteps) ’.dat’ ],’a’);

%fprintf(fid, ’%3.6f ’, i);

fprintf(fid, ’%3.6f ’, alphaM2);fprintf(fid,’\n’);

fclose(fid);

end
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end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code makes the figure for AlphaTriplets.m

% Calling files.

alphaM0_20Vector = load([’alphaM0_20.dat’]);

alphaM1_20Vector = load([’alphaM1_20.dat’]);

alphaM2_20Vector = load([’alphaM2_20.dat’]);

alphaM0_40Vector = load([’alphaM0_40.dat’]);

alphaM1_40Vector = load([’alphaM1_40.dat’]);

alphaM2_40Vector = load([’alphaM2_40.dat’]);

alphaM0_60Vector = load([’alphaM0_60.dat’]);

alphaM1_60Vector = load([’alphaM1_60.dat’]);

alphaM2_60Vector = load([’alphaM2_60.dat’]);

alphaM0_80Vector = load([’alphaM0_80.dat’]);

alphaM1_80Vector = load([’alphaM1_80.dat’]);

alphaM2_80Vector = load([’alphaM2_80.dat’]);

alphaM0_100Vector = load([’alphaM0_100.dat’]);

alphaM1_100Vector = load([’alphaM1_100.dat’]);

alphaM2_100Vector = load([’alphaM2_100.dat’]);

alphaM0_200Vector = load([’alphaM0_200.dat’]);

alphaM1_200Vector = load([’alphaM1_200.dat’]);

alphaM2_200Vector = load([’alphaM2_200.dat’]);

% And here’s our figure.

figure(1)

grid on

hold on
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plot3(alphaM0_20Vector, alphaM1_20Vector, alphaM2_20V ector,’k.’);%,’b.’);

plot3(alphaM0_40Vector, alphaM1_40Vector, alphaM2_40V ector,’b.’);%,’go’);

plot3(alphaM0_60Vector, alphaM1_60Vector, alphaM2_60V ector,’r.’);%,’rx’);

plot3(alphaM0_80Vector, alphaM1_80Vector, alphaM2_80V ector,’g.’);%,’cs’);

plot3(alphaM0_100Vector, alphaM1_100Vector, alphaM2_1 00Vector,’m.’);%,’mˆ’);

plot3(alphaM0_200Vector, alphaM1_200Vector, alphaM2_2 00Vector,’c.’);%,’kp’);

set(gca,’zscale’,’log’); set(gca,’yscale’,’log’); set (gca,’xscale’,’log’);

axis([0 0.0003 0 0.06 0 0.05]);

xlabel(’alphaD0’); ylabel(’alphaD1’); zlabel(’alphaD2 ’);

legend(’20 Year Coexistence’, ’40 Year Coexistence’, ’60 Y ear Coexistence’,

’80 Year Coexistence’, ’100 Year Coexistence’, ’200 Year Co existence’);

title(’Possible Unknown Parameter Triplets for Various Co existence Scenarios’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code simulates interacting Lithobates catesbeianus and Rana

% draytonii in a landscape composed of eight ponds. The model is based off

% of matrix equations presented by Doubledee et al (2003). It has been

% modified to expand the number of stages for the bullfrog, co ntract the

% number of stages for the California red-legged frog (CRLF) , incorporate

% tadpole interactions between species and a ’fast-track’ t adpole option

% for the first year tadpoles of the bullfrog.

% First, create a matrix (M) which holds all the distances bet ween all

% possible pairs of ponds. Next, we create matrices R_C1, R_C 2, and R_D

% which hold rates of movement for first year bullfrog juveni les, second

% year bullfrog juveniles, and CRLF juveniles, respectivel y. They were

% calculated using a gamma distribution fitted to the data of Fellers and

% Kleeman (2007). These probabilities were also multiplied by decision

% probabilities differentiated by stage, and habitat quali ty movement

% probabilities that are unique over species. This allows pr oportions of

% the frog populations to move according to what has been obse rved in the

% field according to the best available science. This code fi nishes with

% two time series figures, one with three subfigures encompa ssing the three

% CRLF stages, and one with five subfigures encompassing the five bullfrog



52

% stages.

%-------------------------------------------------- ------------------------

% Number of ponds.

nponds = 8;

% Pond distance matrix initialization.

M = zeros(nponds,nponds);

% Pond distance matrix entry values.

M(1,2) = 14740;

M(2,1) = M(1,2);

M(1,3) = 15240;

M(3,1) = M(1,3);

M(1,4) = 15640;

M(4,1) = M(1,4);

M(1,5) = 21610;

M(5,1) = M(1,5);

M(1,6) = 22400;

M(6,1) = M(1,6);

M(1,7) = 30830;

M(7,1) = M(1,7);

M(1,8) = 43870;

M(8,1) = M(1,8);

M(2,3) = 519.38;

M(3,2) = M(2,3);

M(2,4) = 885.14;

M(4,2) = M(2,4);

M(2,5) = 6950;

M(5,2) = M(2,5);

M(2,6) = 7720;

M(6,2) = M(2,6);

M(2,7) = 16130;

M(7,2) = M(2,7);

M(2,8) = 29130;

M(8,2) = M(2,8);
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M(3,4) = 541.12;

M(4,3) = M(3,4);

M(3,5) = 6440;

M(5,3) = M(3,5);

M(3,6) = 7210;

M(6,3) = M(3,6);

M(3,7) = 15610;

M(7,3) = M(3,7);

M(3,8) = 28650;

M(8,3) = M(3,8);

M(4,5) = 6040;

M(5,4) = M(4,5);

M(4,6) = 6840;

M(6,4) = M(4,6);

M(4,7) = 15210;

M(7,4) = M(4,7);

M(4,8) = 28210;

M(8,4) = M(4,8);

M(5,6) = 677.97;

M(6,5) = M(5,6);

M(5,7) = 9110;

M(7,5) = M(5,7);

M(5,8) = 22270;

M(8,5) = M(5,8);

M(6,7) = 8400;

M(7,6) = M(6,7);

M(6,8) = 21580;

M(8,6) = M(6,8);

M(7,8) = 13340;

M(8,7) = M(7,8);

MD = M;
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MC = M;

% This forces the distance entries to be less that 5600 meters , our assumed

% maximum traversable distance for the bullfrog.

for i = 1:nponds

for j = 1:nponds

if MC(i,j) > 5600

MC(i,j) = 0;

end

end

end

% This forces the distance entries to be less that 2800 meters , our assumed

% maximum traversable distance for the CRLF.

for i = 1:nponds

for j = 1:nponds

if MD(i,j) > 2800

MD(i,j) = 0;

end

end

end

% Here we create our gamma distributions for both species. No te that since

% we are in the ’deterministic’ version of the simulation, we only create

% one gamma distribution for each species. The distribution s are dependent

% only on the distances between the ponds.

[R_D]=calculate_rij_det_Dnew(MD);

[R_C1]=calculate_rij_det_Cnew(MC);

[R_C2]=calculate_rij_det_Cnew(MC);

newMC2 = zeros(nponds,nponds);

RecipnewMC2 = zeros(nponds,nponds);

[rowC2,colC2] = find(R_C2);

DispDepInflC2 = zeros(nponds,nponds);

for g = 1:length(rowC2)

newMC2(rowC2(g),colC2(g)) = MC(rowC2(g),colC2(g));
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end

for h = 1:nponds

if nnz(R_D(h,:)) > 1

R_D(h,:) = R_D(h,:)/nnz(R_D(h,:));

end

if nnz(R_C1(h,:)) > 1

R_C1(h,:) = R_C1(h,:)/nnz(R_C1(h,:));

end

for k = 1:nponds

if newMC2(h,k)==0

DispDepInflC2(h,k) = 0;

else

RecipnewMC2(h,k) = 1/newMC2(h,k);

end

end

end

for h = 1:nponds

for k = 1:nponds

if RecipnewMC2(h,k)˜=0

DispDepInflC2(h,k) = (RecipnewMC2(h,k))/(sum(Recipnew MC2(h,:)));

end

end

end

for j = 1:nponds

for k = 1:nponds

R_C2(j,k) = R_C2(j,k) * DispDepInflC2(j,k);

end

end

for j = 1:length(rowC2)

if colC2(j)==1

R_C2(rowC2(j),colC2(j))=0;
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elseif colC2(j)==2

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==6

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==7

R_C2(rowC2(j),colC2(j))=0;

end

end

R_Dtrans = R_D’;

R_C1trans = R_C1’;

R_C2trans = R_C2’;

% Initial conditions.

u = [4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4

4956 42 4 ];

v = [0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4 9158 754 68 16 4 9158 754 68 16

4 0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4];

% Here we initalize a zero vector of the appropriate size that is of a form

% that is easier to work with later on.

draytonii = zeros(nponds * 3,1);

catesbeiana = zeros(nponds * 5,1);

% Now we throw in the inital conditions.

draytonii(:,1) = u;

catesbeiana(:,1) = v;

% Turning the row vector into a column vector.

draytonii(:,1) = draytonii(:,1)’;

catesbeiana(:,1) = catesbeiana(:,1)’;

% Creating zero matrices.
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D = zeros(nponds * 3,nponds * 3);

C = zeros(nponds * 5,nponds * 5);

% Number of timesteps in the simulation.

nsteps = 200;

% Parameters

p1 = 0.025; p2 = 0.25; p3 = 0.4; p4 = 0.5; r = 1500;

s1 = 0.1; sFT = 0.016; s2 = 0.02; s3 = 0.26; s4 = 0.32;

s5 = 0.65; b = 4000; gamma = 0.02; mu = 0.05; eta = 0.033;

% Unknown parameters.

%alphaM1 = 0.01; alphaM2 = 0.002; alphaM0 = 0.00002;%200yea r coexistence

%alphaM1 = 0.01; alphaM2 = 0.003; alphaM0 = 0.00002;%100yea r coexistence

alphaM1 = 0.001; alphaM2 = 0.0008; alphaM0 = 0.00003;%60 yea r coexistence

%alphaM1 = 0.003; alphaM2 = 0.0001; alphaM0 = 0.00004;%20ye ar coexistence

for i = 1:nsteps

for j = 1:nponds

% Assigning the constant entries.

D(j * 3-2,3 * j) = r * p4;

D(3 * j,3 * j) = p4;

C(j * 5-1,j * 5-2) = s3;

C(j * 5,j * 5) = s5;

% Here we ensure that overwintering bullfrog tadpoles will n ot

% survive in the seasonal ponds.

if j == 1

C(j * 5-3,j * 5-4) = 0;

elseif j == 2
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C(j * 5-3,j * 5-4) = 0;

elseif j == 6

C(j * 5-3,j * 5-4) = 0;

elseif j == 7

C(j * 5-3,j * 5-4) = 0;

else

C(j * 5-3,j * 5-4) = s1 * exp(-gamma * catesbeiana(5 * j,i));

end

C(j * 5-4,j * 5) = b * s5 * exp(-gamma * catesbeiana(5 * j,i));

end

% Assigning the function entries.

for j = 1:nponds

D(j * 3-1,j * 3-2) = p1 * p2* exp(-eta * draytonii(3 * j,i)-alphaM1

* catesbeiana(5 * j,i)-alphaM0 * catesbeiana(5 * j-4,i));

D(j * 3,j * 3-1) = p3 * exp(-alphaM2 * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-4) = sFT * exp(-mu * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-3) = s2 * exp(-mu * catesbeiana(5 * j,i));

C(j * 5,j * 5-1) = s4;

% Here we gather the juvenile populations of both species sin ce

% they will be the only indiviuals moving between ponds.

Juv_D(j,1)=draytonii(j * 3-1,i);

Juv_C1(j,1)=catesbeiana(j * 5-2,i);

Juv_C2(j,1)=catesbeiana(j * 5-1,i);

% Here we gather the adult population of bullfrogs in order to

% calculate the CRLF habitat quality movement probability.
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Ad_C(j,1) = catesbeiana(j * 5,i);

if Ad_C(j)==0

Ad_C(j)=1;

end

if Ad_C(j)<1

Ad_C(j)=1;

else

Ad_C(j)=1-(1/(Ad_C(j)));

end

if Ad_C(j)==0

Ad_C(j)=1;

end

end

%Here we incorporate this probability into our movement rat e matrix.

for j = i:nponds

for k = 1:nponds

if Ad_C(j)˜=0

R_D(j,k) = R_D(j,k) * Ad_C(j);

end

end

end

% Multiplying our juvenile population by the proportion of m oving

% indivuals gives us the number of individuals leaving their pond.

for h = 1:nponds

immMatrixJuvD(h,:) = R_D(h,:) * Juv_D(h);

immMatrixJuvC1(h,:) = R_C1(h,:) * Juv_C1(h);

immMatrixJuvC2(h,:) = R_C2(h,:) * Juv_C2(h);

end

immVectorJuvD = sum(immMatrixJuvD,2);

immVectorJuvC1 = sum(immMatrixJuvC1,2);

immVectorJuvC2 = sum(immMatrixJuvC2,2);

emmVectorJuvD = R_Dtrans * Juv_D;
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emmVectorJuvC1 = R_C1trans * Juv_C1;

emmVectorJuvC2 = R_C2trans * Juv_C2;

% The following three paragraphs are present mearly to put al l the

% above immigration/emigration information in vectors of t he

% appropriate size to be subtracted from and added to the popu lation

% vector.

x_JuvD_dummy=[0 0 1];

imm_JuvD=kron(immVectorJuvD’,x_JuvD_dummy);

emm_JuvD=kron(emmVectorJuvD’,x_JuvD_dummy);

x_JuvC1_dummy=[0 0 0 1 0];

imm_JuvC1=kron(immVectorJuvC1’,x_JuvC1_dummy);

emm_JuvC1=kron(emmVectorJuvC1’,x_JuvC1_dummy);

x_JuvC2_dummy=[0 0 0 0 1];

imm_JuvC2=kron(immVectorJuvC2’,x_JuvC2_dummy);

emm_JuvC2=kron(emmVectorJuvC2’,x_JuvC2_dummy);

% Here we update the population vector according to it’s para meters and

% the immigration/emigration rules outlined above.

draytonii(:,i+1) = D * draytonii(:,i)-imm_JuvD’+emm_JuvD’;

catesbeiana(:,i+1) = C * catesbeiana(:,i)-imm_JuvC1’+emm_JuvC1’-imm_JuvC2’

+emm_JuvC2’;

% This ensures that we do not deal with (or see in the figures)

% negative numbers of frogs.

neg_d=find(draytonii<0); draytonii(neg_d)=0;

neg_c=find(catesbeiana<0); catesbeiana(neg_c)=0;

end

% Here’s the way we create the figures.

t=(0:1:nsteps);
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figure(1)

subplot(3,1,1)

hold on

%plot(t,draytonii(1,:),’m’);

plot(t,draytonii(4,:),’g’);

plot(t,draytonii(7,:),’c’);

plot(t,draytonii(10,:),’k’);

plot(t,draytonii(13,:),’m’);

plot(t,draytonii(16,:),’r’);

%plot(t,draytonii(19,:),’m’);

plot(t,draytonii(22,:),’b’);

title(’CRLF Tadpole Population’);

xlabel(’Years’);

ylabel(’Number of Individuals’);

legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP’ , ’Pond BL’);

subplot(3,1,2)

hold on

%plot(t,draytonii(2,:),’m’);

plot(t,draytonii(5,:),’g’);

plot(t,draytonii(8,:),’c’);

plot(t,draytonii(11,:),’k’);

plot(t,draytonii(14,:),’m’);

plot(t,draytonii(17,:),’r’);

%plot(t,draytonii(20,:),’m’);

plot(t,draytonii(23,:),’b’);

title(’CRLF Juvenile Population’);

xlabel(’Years’);

ylabel(’Number of Individuals’);

%legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP ’, ’Pond BL’);

subplot(3,1,3)

hold on

%plot(t,draytonii(2,:),’m’);

plot(t,draytonii(6,:),’g’);
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plot(t,draytonii(9,:),’c’);

plot(t,draytonii(12,:),’k’);

plot(t,draytonii(15,:),’m’);

plot(t,draytonii(18,:),’r’);

%plot(t,draytonii(21,:),’m’);

plot(t,draytonii(24,:),’b’);

title(’CRLF Adult Population’);

xlabel(’Years’);

ylabel(’Number of Individuals’);

%legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP ’, ’Pond BL’);

figure(2)

subplot(5,1,1)

hold on

plot(t,catesbeiana(6,:),’g’);

plot(t,catesbeiana(11,:),’c’);

plot(t,catesbeiana(16,:),’k’);

plot(t,catesbeiana(21,:),’m’);

plot(t,catesbeiana(26,:),’r’);

%plot(t,draytonii(21,:),’m’);

plot(t,catesbeiana(36,:),’b’);

title(’BF First Year Tadpole Population’);

xlabel(’Years’);

ylabel(’# of Individuals’);

legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP’ , ’Pond BL’);

subplot(5,1,2)

hold on

plot(t,catesbeiana(7,:),’g’);

plot(t,catesbeiana(12,:),’c’);

plot(t,catesbeiana(17,:),’k’);

plot(t,catesbeiana(22,:),’m’);

plot(t,catesbeiana(27,:),’r’);

%plot(t,draytonii(21,:),’m’);

plot(t,catesbeiana(37,:),’b’);

title(’BF Second Year Tadpole Population’);

xlabel(’Years’);
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ylabel(’# of Individuals’);

%legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP ’, ’Pond BL’);

subplot(5,1,3)

hold on

plot(t,catesbeiana(8,:),’g’);

plot(t,catesbeiana(13,:),’c’);

plot(t,catesbeiana(18,:),’k’);

plot(t,catesbeiana(23,:),’m’);

plot(t,catesbeiana(28,:),’r’);

%plot(t,draytonii(21,:),’m’);

plot(t,catesbeiana(38,:),’b’);

title(’BF First Year Juvenile Population’);

xlabel(’Years’);

ylabel(’# of Individuals’);

%legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP ’, ’Pond BL’);

subplot(5,1,4)

hold on

plot(t,catesbeiana(9,:),’g’);

plot(t,catesbeiana(14,:),’c’);

plot(t,catesbeiana(19,:),’k’);

plot(t,catesbeiana(24,:),’m’);

plot(t,catesbeiana(29,:),’r’);

%plot(t,draytonii(21,:),’m’);

plot(t,catesbeiana(39,:),’b’);

title(’BF Second Year Juvenile Population’);

xlabel(’Years’);

ylabel(’# of Individuals’);

%legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP ’, ’Pond BL’);

subplot(5,1,5)

hold on

plot(t,catesbeiana(10,:),’g’);

plot(t,catesbeiana(15,:),’c’);

plot(t,catesbeiana(20,:),’k’);

plot(t,catesbeiana(25,:),’m’);



64

plot(t,catesbeiana(30,:),’r’);

%plot(t,draytonii(21,:),’m’);

plot(t,catesbeiana(40,:),’b’);

title(’BF Adult Population’);

xlabel(’Years’);

ylabel(’# of Individuals’);

%legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP ’, ’Pond BL’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [R]=calculate_rij_det_Cnew(Dnbyn)

% This code calculates our Fellers and Kleeman (2007) data fi tted

% gamma distribution for an element of our bullfrog movment r ule

% in the deterministic model.

nponds = 8;

R = zeros(nponds,nponds);

for i = 1:nponds

for j = 1:nponds

if Dnbyn(i,j) == 0

R(i,j)=0;

else

D=Dnbyn(i,j);

p = gamcdf(D,0.3911,800);

R(i,j) = 1-p;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [R]=calculate_rij_det_Dnew(Dnbyn)
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% This code calculates our Fellers and Kleeman (2007) data fi tted

% gamma distribution for an element of our CRLF movment rule

% in the deterministic model.

nponds = 8;

R = zeros(nponds,nponds);

for i = 1:nponds

for j = 1:nponds

if Dnbyn(i,j) == 0

R(i,j)=0;

else

D=Dnbyn(i,j);

p = gamcdf(D,0.3911,381.6206);

R(i,j) = 1-p;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [p,plo,pup] = gamcdf(x,a,b,pcov,alpha)

%GAMCDF Gamma cumulative distribution function.

% P = GAMCDF(X,A,B) returns the gamma cumulative distributi on function

% with shape and scale parameters A and B, respectively, at th e values in

% X. The size of P is the common size of the input arguments. A sc alar

% input functions as a constant matrix of the same size as the o ther

% inputs.

%

% Some references refer to the gamma distribution with a sing le

% parameter. This corresponds to the default of B = 1.

%

% [P,PLO,PUP] = GAMCDF(X,A,B,PCOV,ALPHA) produces confid ence bounds for

% P when the input parameters A and B are estimates. PCOV is a 2- by-2
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% matrix containing the covariance matrix of the estimated p arameters.

% ALPHA has a default value of 0.05, and specifies 100 * (1-ALPHA)%

% confidence bounds. PLO and PUP are arrays of the same size as P

% containing the lower and upper confidence bounds.

%

% See also GAMFIT, GAMINV, GAMLIKE, GAMPDF, GAMRND, GAMSTAT, GAMMAINC.

% GAMMAINC does computational work.

% References:

% [1] Abramowitz, M. and Stegun, I.A. (1964) Handbook of Math ematical

% Functions, Dover, New York, section 26.1.

% [2] Evans, M., Hastings, N., and Peacock, B. (1993) Statist ical

% Distributions, 2nd ed., Wiley.

% Copyright 1993-2004 The MathWorks, Inc.

% $Revision: 2.12.2.4 $ $Date: 2004/12/24 20:46:50 $

if nargin < 2

error(’stats:gamcdf:TooFewInputs’,...

’Requires at least two input arguments.’);

elseif nargin < 3

b = 1;

end

% More checking if we need to compute confidence bounds.

if nargout > 1

if nargin < 4

error(’stats:gamcdf:TooFewInputs’,...

’Must provide covariance matrix to compute confidence boun ds.’);

end

if ˜isequal(size(pcov),[2 2])

error(’stats:gamcdf:BadCovariance’,...

’Covariance matrix must have 2 rows and columns.’);

end

if nargin < 5

alpha = 0.05;
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elseif ˜isnumeric(alpha) || numel(alpha) ˜= 1 || alpha <= 0 | | alpha >= 1

error(’stats:gamcdf:BadAlpha’,...

’ALPHA must be a scalar between 0 and 1.’);

end

end

% Return NaN for out of range parameters.

a(a <= 0) = NaN;

b(b <= 0) = NaN;

x(x < 0) = 0;

try

z = x ./ b;

p = gammainc(z, a);

catch

error(’stats:gamcdf:InputSizeMismatch’,...

’Non-scalar arguments must match in size.’);

end

p(z == Inf) = 1;

% Compute confidence bounds if requested.

if nargout >= 2

% Approximate the variance of p on the logit scale

logitp = log(p./(1-p));

dp = 1 ./ (p. * (1-p)); % derivative of logit(p) w.r.t. p

da = dgammainc(z,a) . * dp; % dlogitp/da = dp/da * dlogitp/dp

db = -exp(a. * log(z)-z-gammaln(a)-log(b)) . * dp; % dlogitp/db = dp/db *

dlogitp/dp

varLogitp = pcov(1,1). * da.ˆ2 + 2. * pcov(1,2). * da. * db + pcov(2,2). * db.ˆ2;

if any(varLogitp(:) < 0)

error(’stats:gamcdf:BadCovariance’,...

’PCOV must be a positive semi-definite matrix.’);

end

% Use a normal approximation on the logit scale, then transfo rm back to

% the original CDF scale

halfwidth = -norminv(alpha/2) * sqrt(varLogitp);
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explogitplo = exp(logitp - halfwidth);

explogitpup = exp(logitp + halfwidth);

plo = explogitplo ./ (1 + explogitplo);

pup = explogitpup ./ (1 + explogitpup);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code simulates interacting Lithobates catesbeianus and Rana

% draytonii in a landscape composed of eight ponds. The model is based off

% of matrix equations presented by Doubledee et al (2003). It has been

% modified to expand the number of stages for the bullfrog, co ntract the

% number of stages for the California red-legged frog (CRLF) , incorporate

% tadpole interactions between species and a ’fast-track’ t adpole option

% for the first year tadpoles of the bullfrog.

% First, create a matrix (M) which holds all the distances bet ween all

% possible pairs of ponds. Next, we create matrices R_C1, R_C 2, and R_D

% which hold rates of movement for first year bullfrog juveni les, second

% year bullfrog juveniles, and CRLF juveniles, respectivel y. They were

% calculated using a gamma distributed histogram fitted to t he data of

% Fellers and Kleeman (2007). These probabilities were also multiplied

% by decision probabilities differentiated by stage, and ha bitat quality

% movement probabilities that are unique over species. This allows

% proportions of the frog populations to move according to wh at has been

% observed in the field according to the best available scien ce. This code

% finishes with two time series figures, one with three subfi gures

% encompassing the three CRLF stages, and one with five subfi gures

% encompassing the five bullfrog stages.

%-------------------------------------------------- ------------------------

% Number of ponds.

nponds = 8;

% Pond distance matrix initialization. Called M in the thesi s.
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Dnbyn = zeros(nponds,nponds);

% Pond distance matrix entry values.

Dnbyn(1,2) = 14740;

Dnbyn(2,1) = Dnbyn(1,2);

Dnbyn(1,3) = 15240;

Dnbyn(3,1) = Dnbyn(1,3);

Dnbyn(1,4) = 15640;

Dnbyn(4,1) = Dnbyn(1,4);

Dnbyn(1,5) = 21610;

Dnbyn(5,1) = Dnbyn(1,5);

Dnbyn(1,6) = 22400;

Dnbyn(6,1) = Dnbyn(1,6);

Dnbyn(1,7) = 30830;

Dnbyn(7,1) = Dnbyn(1,7);

Dnbyn(1,8) = 43870;

Dnbyn(8,1) = Dnbyn(1,8);

Dnbyn(2,3) = 519.38;

Dnbyn(3,2) = Dnbyn(2,3);

Dnbyn(2,4) = 885.14;

Dnbyn(4,2) = Dnbyn(2,4);

Dnbyn(2,5) = 6950;

Dnbyn(5,2) = Dnbyn(2,5);

Dnbyn(2,6) = 7720;

Dnbyn(6,2) = Dnbyn(2,6);

Dnbyn(2,7) = 16130;

Dnbyn(7,2) = Dnbyn(2,7);

Dnbyn(2,8) = 29130;

Dnbyn(8,2) = Dnbyn(2,8);

Dnbyn(3,4) = 541.12;

Dnbyn(4,3) = Dnbyn(3,4);

Dnbyn(3,5) = 6440;

Dnbyn(5,3) = Dnbyn(3,5);

Dnbyn(3,6) = 7210;
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Dnbyn(6,3) = Dnbyn(3,6);

Dnbyn(3,7) = 15610;

Dnbyn(7,3) = Dnbyn(3,7);

Dnbyn(3,8) = 28650;

Dnbyn(8,3) = Dnbyn(3,8);

Dnbyn(4,5) = 6040;

Dnbyn(5,4) = Dnbyn(4,5);

Dnbyn(4,6) = 6840;

Dnbyn(6,4) = Dnbyn(4,6);

Dnbyn(4,7) = 15210;

Dnbyn(7,4) = Dnbyn(4,7);

Dnbyn(4,8) = 28210;

Dnbyn(8,4) = Dnbyn(4,8);

Dnbyn(5,6) = 677.97;

Dnbyn(6,5) = Dnbyn(5,6);

Dnbyn(5,7) = 9110;

Dnbyn(7,5) = Dnbyn(5,7);

Dnbyn(5,8) = 22270;

Dnbyn(8,5) = Dnbyn(5,8);

Dnbyn(6,7) = 8400;

Dnbyn(7,6) = Dnbyn(6,7);

Dnbyn(6,8) = 21580;

Dnbyn(8,6) = Dnbyn(6,8);

Dnbyn(7,8) = 13340;

Dnbyn(8,7) = Dnbyn(7,8);

DnbynD = Dnbyn;

DnbynC = Dnbyn;

% BF max distance.

for i = 1:nponds

for j = 1:nponds
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if DnbynC(i,j) > 5600

DnbynC(i,j) = 0;

end

end

end

% CRLF max distance.

for i = 1:nponds

for j = 1:nponds

if DnbynD(i,j) > 2800

DnbynD(i,j) = 0;

end

end

end

% Initial conditions.

u = [4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4

4956 42 4 ]; % Initial CRLF population densities.

v = [0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4 9158 754 68 16 4 9158 754 68 16

4 0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4]; % Initial BF population densit ies.

%v = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0];

% Here we initalize a zero vector of the appropriate size that is of a form

% that is easier to work with later on.

draytonii = zeros(nponds * 3,1);

catesbeiana = zeros(nponds * 5,1);

% Now we throw in the inital conditions.

draytonii(:,1) = u;

catesbeiana(:,1) = v;

% Turning the row vector into a column vector.

draytonii(:,1) = draytonii(:,1)’;

catesbeiana(:,1) = catesbeiana(:,1)’;
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% Creating zero matrices.

D = zeros(nponds * 3,nponds * 3);

C = zeros(nponds * 5,nponds * 5);

% Number of timesteps in the simulation.

nsteps = 200;

% Parameters.

p1 = 0.025; p2 = 0.25; p3 = 0.4; p4 = 0.5; r = 1500;

s1 = 0.1; s2 = 0.02; sFT = 0.016; s3 = 0.26; s4 = 0.32;

s5 = 0.65; b = 4000; gamma = 0.02; mu = 0.05; eta = 0.033;

% Unknown parameters.

%alphaM1 = 0.01; alphaM2 = 0.002; alphaM0 = 0.00002;%200yea r coexistence

%alphaM1 = 0.01; alphaM2 = 0.003; alphaM0 = 0.00002;%100yea r coexistence

alphaM1 = 0.001; alphaM2 = 0.0008; alphaM0 = 0.00003;%60 yea r coexistence

%alphaM1 = 0.003; alphaM2 = 0.0001; alphaM0 = 0.00004;%20ye ar coexistence

for i = 1:nsteps

for j = 1:nponds

% Assigning the constant entries.

D(j * 3-2,3 * j) = r * p4;

D(3 * j,3 * j) = p4;

C(j * 5-1,j * 5-2) = s3;

C(j * 5,j * 5) = s5;

% Here we ensure that overwintering bullfrog tadpoles will n ot

% survive in the seasonal ponds.

if j == 1

C(j * 5-3,j * 5-4) = 0;

elseif j == 2

C(j * 5-3,j * 5-4) = 0;
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elseif j == 6

C(j * 5-3,j * 5-4) = 0;

elseif j == 7

C(j * 5-3,j * 5-4) = 0;

else

C(j * 5-3,j * 5-4) = s1 * exp(-gamma * catesbeiana(5 * j,i));

end

C(j * 5-4,j * 5) = b * s5 * exp(-gamma * catesbeiana(5 * j,i));

end

% Assigning the function entries.

for j = 1:nponds

D(j * 3-1,j * 3-2) = p1 * p2* exp(-eta * draytonii(3 * j,i)-alphaM1

* catesbeiana(5 * j,i)-alphaM0 * catesbeiana(5 * j-4,i));

D(j * 3,j * 3-1) = p3 * exp(-alphaM2 * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-4) = sFT * exp(-mu * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-3) = s2 * exp(-mu * catesbeiana(5 * j,i));

C(j * 5,j * 5-1) = s4;

% Here we gather the juvenile populations of both species sin ce

% they will be the only indiviuals moving between ponds.

Juv_D(j,1)=draytonii(j * 3-1,i);

Juv_C1(j,1)=catesbeiana(j * 5-2,i);

Juv_C2(j,1)=catesbeiana(j * 5-1,i);

% CRLF habitat quality indicator.

Ad_C(j,1) = catesbeiana(j * 5,i);
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if Ad_C(j)==0

Ad_C(j)=1;

end

if Ad_C(j)<1

Ad_C(j)=1;

else

Ad_C(j)=1-(1/(Ad_C(j)));

end

if Ad_C(j)==0

Ad_C(j)=1;

end

end

% Here we create our gamma distributions which tells us what p roportion

% of the juvenile population will move to which pond. Note tha t since

% this is the ’stochastic’ version of the simulation, we upda te the

% gamma distribution every year (time step) for each pond.

% Furthermore, each updated gamma distribution is dependen t upon the

% source pond’s juvenile population. Distance values are dr awn and

% used in their corresponding gamma distribution to obtain r ates of

% dispersion (immigration out of a pond).

[R_D]=calculate_rij_stoch_Dnew(DnbynD,Juv_D);

[R_C1]=calculate_rij_stoch_Cnew(DnbynC,Juv_C1);

[R_C2]=calculate_rij_stoch_Cnew(DnbynC,Juv_C2);

% Stage specific choice probability caclulations.

newDnbynC2 = zeros(nponds,nponds);

RecipnewDnbynC2 = zeros(nponds,nponds);

[rowC2,colC2] = find(R_C2);

DispDepInflC2 = zeros(nponds,nponds);

for g = 1:length(rowC2)

newDnbynC2(rowC2(g),colC2(g)) = DnbynC(rowC2(g),colC2 (g));

end
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for h = 1:nponds

if nnz(R_D(h,:)) > 1

R_D(h,:) = R_D(h,:)/nnz(R_D(h,:));

end

if nnz(R_C1(h,:)) > 1

R_C1(h,:) = R_C1(h,:)/nnz(R_C1(h,:));

end

for k = 1:nponds

if newDnbynC2(h,k)==0

DispDepInflC2(h,k) = 0;

else

RecipnewDnbynC2(h,k) = 1/newDnbynC2(h,k);

end

end

end

for j = 1:length(rowC2)

if colC2(j)==1

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==2

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==6

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==7

R_C2(rowC2(j),colC2(j))=0;

end

end

for h = 1:nponds

for k = 1:nponds

if RecipnewDnbynC2(h,k)˜=0

DispDepInflC2(h,k) = (RecipnewDnbynC2(h,k))/(sum(Reci pnewDnbynC2(h,:)));

end

end
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end

for j = 1:nponds

for k = 1:nponds

R_C2(j,k) = R_C2(j,k) * DispDepInflC2(j,k);

end

end

for j = i:nponds

for k = 1:nponds

if Ad_C(j)˜=0

R_D(j,k) = R_D(j,k) * Ad_C(j);

end

end

end

R_Dtrans = R_D’;

R_C1trans = R_C1’;

R_C2trans = R_C2’;

% Immigration vector calculation.

for h = 1:nponds

immMatrixJuvD(h,:) = R_D(h,:) * Juv_D(h);

immMatrixJuvC1(h,:) = R_C1(h,:) * Juv_C1(h);

immMatrixJuvC2(h,:) = R_C2(h,:) * Juv_C2(h);

end

immVectorJuvD = sum(immMatrixJuvD,2);

immVectorJuvC1 = sum(immMatrixJuvC1,2);

immVectorJuvC2 = sum(immMatrixJuvC2,2);

% Emigration vector calculation.

emmVectorJuvD = R_Dtrans * Juv_D;

emmVectorJuvC1 = R_C1trans * Juv_C1;

emmVectorJuvC2 = R_C2trans * Juv_C2;

% The following three paragraphs are used mearly to put all th e above

% immigration/emigration information in vectors of the app ropriate size

% to be subtracted from and added to the population vector.
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x_JuvD_dummy=[0 0 1];

imm_JuvD=kron(immVectorJuvD’,x_JuvD_dummy);

emm_JuvD=kron(emmVectorJuvD’,x_JuvD_dummy);

x_JuvC1_dummy=[0 0 0 1 0];

imm_JuvC1=kron(immVectorJuvC1’,x_JuvC1_dummy);

emm_JuvC1=kron(emmVectorJuvC1’,x_JuvC1_dummy);

x_JuvC2_dummy=[0 0 0 0 1];

imm_JuvC2=kron(immVectorJuvC2’,x_JuvC2_dummy);

emm_JuvC2=kron(emmVectorJuvC2’,x_JuvC2_dummy);

% Here we update the population vector according to it’s para meters and

% the immigration/emigration rules outlined above.

draytonii(:,i+1) = D * draytonii(:,i)-imm_JuvD’+emm_JuvD’;

catesbeiana(:,i+1) = C * catesbeiana(:,i)-(imm_JuvC1’+imm_JuvC2’)

+(emm_JuvC1’+emm_JuvC2’);

% This ensures that we do not deal with (or see in the figures)

% negative numbers of frogs.

neg_d=find(draytonii<0); draytonii(neg_d)=0;

neg_c=find(catesbeiana<0); catesbeiana(neg_c)=0;

end

% Here’s the way we create the figures.

t=(0:1:nsteps);

figure(1)

subplot(3,1,1)

hold on

plot(t,draytonii(4,:),’g’);

plot(t,draytonii(7,:),’c’);

plot(t,draytonii(10,:),’k’);
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plot(t,draytonii(13,:),’m’);

plot(t,draytonii(16,:),’r’);

plot(t,draytonii(22,:),’b’);

title(’CRLF Tadpole Population’);

xlabel(’Years’);

ylabel(’Number of Individuals’);

legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP’ , ’Pond BL’);

subplot(3,1,2)

hold on

plot(t,draytonii(5,:),’g’);

plot(t,draytonii(8,:),’c’);

plot(t,draytonii(11,:),’k’);

plot(t,draytonii(14,:),’m’);

plot(t,draytonii(17,:),’r’);

plot(t,draytonii(23,:),’b’);

title(’CRLF Juvenile Population’);

xlabel(’Years’);

ylabel(’Number of Individuals’);

subplot(3,1,3)

hold on

plot(t,draytonii(6,:),’g’);

plot(t,draytonii(9,:),’c’);

plot(t,draytonii(12,:),’k’);

plot(t,draytonii(15,:),’m’);

plot(t,draytonii(18,:),’r’);

plot(t,draytonii(24,:),’b’);

title(’CRLF Adult Population’);

xlabel(’Years’);

ylabel(’Number of Individuals’);

figure(2)

subplot(5,1,1)

hold on

plot(t,catesbeiana(6,:),’g’);
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plot(t,catesbeiana(11,:),’c’);

plot(t,catesbeiana(16,:),’k’);

plot(t,catesbeiana(21,:),’m’);

plot(t,catesbeiana(26,:),’r’);

plot(t,catesbeiana(36,:),’b’);

title(’BF First Year Tadpole Population’);

xlabel(’Years’);

ylabel(’# of Individuals’);

legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP’ , ’Pond BL’);

subplot(5,1,2)

hold on

plot(t,catesbeiana(7,:),’g’);

plot(t,catesbeiana(12,:),’c’);

plot(t,catesbeiana(17,:),’k’);

plot(t,catesbeiana(22,:),’m’);

plot(t,catesbeiana(27,:),’r’);

plot(t,catesbeiana(37,:),’b’);

title(’BF Second Year Tadpole Population’);

xlabel(’Years’);

ylabel(’# of Individuals’);

subplot(5,1,3)

hold on

plot(t,catesbeiana(8,:),’g’);

plot(t,catesbeiana(13,:),’c’);

plot(t,catesbeiana(18,:),’k’);

plot(t,catesbeiana(23,:),’m’);

plot(t,catesbeiana(28,:),’r’);

plot(t,catesbeiana(38,:),’b’);

title(’BF First Year Juvenile Population’);

xlabel(’Years’);

ylabel(’# of Individuals’);

subplot(5,1,4)

hold on

plot(t,catesbeiana(9,:),’g’);
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plot(t,catesbeiana(14,:),’c’);

plot(t,catesbeiana(19,:),’k’);

plot(t,catesbeiana(24,:),’m’);

plot(t,catesbeiana(29,:),’r’);

plot(t,catesbeiana(39,:),’b’);

title(’BF Second Year Juvenile Population’);

xlabel(’Years’);

ylabel(’# of Individuals’);

subplot(5,1,5)

hold on

plot(t,catesbeiana(10,:),’g’);

plot(t,catesbeiana(15,:),’c’);

plot(t,catesbeiana(20,:),’k’);

plot(t,catesbeiana(25,:),’m’);

plot(t,catesbeiana(30,:),’r’);

plot(t,catesbeiana(40,:),’b’);

title(’BF Adult Population’);

xlabel(’Years’);

ylabel(’# of Individuals’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [R]=calculate_rij_stoch_Cnew(Dnbyn,n_pop)

% This code calculates our Fellers and Kleeman (2007) data fi tted

% gamma distributioned histogram for an element of our BF mov ement

% rule in the stochastic model.

nponds = 8;

R = zeros(nponds,nponds);

n_pop=floor(n_pop);

for i = 1:nponds

for j = 1:nponds
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if n_pop(i)<1

R(i,:)=0;

else

dist1=gamm_rnd(n_pop(i),0.60,0.0013); % Presumed max di stance: 5600 m

n_bin=ceil(max(dist1));

[n,x]=hist(dist1,n_bin);

prob_dist1=n/sum(n);

if Dnbyn(i,j) > n_bin

R(i,j)=0;

elseif Dnbyn(i,j) == 0

R(i,j)=0;

else

dist_ij=Dnbyn(i,j);

index_v=find(x<dist_ij);

max_index=max(index_v);

int_prob_dist1=sum(prob_dist1(1:max_index));

R(i,j) = 1-int_prob_dist1;

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [R]=calculate_rij_stoch_Dnew(Dnbyn,n_pop)

% This code calculates our Fellers and Kleeman (2007) data fi tted

% gamma distributioned histogram for an element of our CRLF m ovement

% rule in the stochastic model.

nponds = 8;

R = zeros(nponds,nponds);

n_pop=floor(n_pop);



82

for i = 1:nponds

if n_pop(i)<1

R(i,:)=0;

else

dist1=gamm_rnd(n_pop(i),0.60,0.0028); % Presumed max di stance: 2800 m

n_bin=ceil(max(dist1));

[n,x]=hist(dist1,n_bin);

prob_dist1=n/sum(n);

for j = 1:nponds

if Dnbyn(i,j) > n_bin

R(i,j)=0;

elseif Dnbyn(i,j) == 0

R(i,j)=0;

else

dist_ij=Dnbyn(i,j);

index_v=find(x<dist_ij);

max_index=max(index_v);

int_prob_dist1=sum(prob_dist1(1:max_index));

R(i,j) = 1-int_prob_dist1;

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function gb = gamm_rnd(nrow,m,k)

% PURPOSE: a matrix of random draws from the gamma distributi on

%-------------------------------------------------- -

% USAGE: r = gamm_rnd(nrow,m,k)

% where: nrow = the row size of the vector drawn

% m = a parameter such that the mean of the gamma = m/k

% k = a parameter (or vector) such that the variance of the gamm a = m/(kˆ2)
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% note: m=r/2, k=2 equals chisq r random deviate

%-------------------------------------------------- -

% RETURNS:

% r = an nrow x 1 vector of random numbers from the gamma distrib ution

% --------------------------------------------------

% SEE ALSO: gamm_inv, gamm_pdf, gamm_cdf

%-------------------------------------------------- -

% NOTE: written by: Michael Gordy, 15 Sept 1993

% mbgordy@athena.mit.edu

%-------------------------------------------------- -

% REFERENCES: Luc Devroye, Non-Uniform Random Variate Gene ration,

% New York: Springer Verlag, 1986, ch 9.3-6.

if nargin ˜= 3

error(’Wrong # of arguments to gamm_rnd’);

end;

ncol = 1;

gb=zeros(nrow,ncol);

if m<=1

% Use RGS algorithm by Best, p. 426

c=1/m;

t=0.07+0.75 * sqrt(1-m);

b=1+exp(-t) * m/t;

for i1=1:nrow

for i2=1:ncol

accept=0;

while accept==0

u=rand; w=rand; v=b * u;

if v<=1

x=t * (vˆc);

accept=((w<=((2-x)/(2+x))) | (w<=exp(-x)));

else

x=-log(c * t * (b-v));

y=x/t;

accept=(((w * (m+y-m * y))<=1) | (w<=(yˆ(m-1))));

end

end

gb(i1,i2)=x;



84

end

end

else

% Use Best’s rejection algorithm XG, p. 410

b=m-1;

c=3 * m-0.75;

for i1=1:nrow

for i2=1:ncol

accept=0;

while accept==0

u=rand; v=rand;

w=u* (1-u); y=sqrt(c/w) * (u-0.5);

x=b+y;

if x >= 0

z=64 * (wˆ3) * v* v;

accept=(z<=(1-2 * y* y/x)) | (log(z)<=(2 * (b * log(x/b)-y)));

end

end

gb(i1,i2)=x;

end

end

end

%gb = matdiv(gb,k);

gb=gb/k;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code simulates the act of dipnetting all ponds every ye ar for

% various levels of eradication (0-100% at 5% incements) usi ng the

% stochasic model version. Running PondDrainingFigure.m a fterward

% will produce the figure.

close all;

clear;

% Number of ponds.
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nponds = 8;

% Pond distance matrix initialization. We call this matrix M in the

% thesis.

Dnbyn = zeros(nponds,nponds);

% Pond distance matrix entry values.

Dnbyn(1,2) = 14740;

Dnbyn(2,1) = Dnbyn(1,2);

Dnbyn(1,3) = 15240;

Dnbyn(3,1) = Dnbyn(1,3);

Dnbyn(1,4) = 15640;

Dnbyn(4,1) = Dnbyn(1,4);

Dnbyn(1,5) = 21610;

Dnbyn(5,1) = Dnbyn(1,5);

Dnbyn(1,6) = 22400;

Dnbyn(6,1) = Dnbyn(1,6);

Dnbyn(1,7) = 30830;

Dnbyn(7,1) = Dnbyn(1,7);

Dnbyn(1,8) = 43870;

Dnbyn(8,1) = Dnbyn(1,8);

Dnbyn(2,3) = 519.38;

Dnbyn(3,2) = Dnbyn(2,3);

Dnbyn(2,4) = 885.14;

Dnbyn(4,2) = Dnbyn(2,4);

Dnbyn(2,5) = 6950;

Dnbyn(5,2) = Dnbyn(2,5);

Dnbyn(2,6) = 7720;

Dnbyn(6,2) = Dnbyn(2,6);

Dnbyn(2,7) = 16130;

Dnbyn(7,2) = Dnbyn(2,7);

Dnbyn(2,8) = 29130;

Dnbyn(8,2) = Dnbyn(2,8);
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Dnbyn(3,4) = 541.12;

Dnbyn(4,3) = Dnbyn(3,4);

Dnbyn(3,5) = 6440;

Dnbyn(5,3) = Dnbyn(3,5);

Dnbyn(3,6) = 7210;

Dnbyn(6,3) = Dnbyn(3,6);

Dnbyn(3,7) = 15610;

Dnbyn(7,3) = Dnbyn(3,7);

Dnbyn(3,8) = 28650;

Dnbyn(8,3) = Dnbyn(3,8);

Dnbyn(4,5) = 6040;

Dnbyn(5,4) = Dnbyn(4,5);

Dnbyn(4,6) = 6840;

Dnbyn(6,4) = Dnbyn(4,6);

Dnbyn(4,7) = 15210;

Dnbyn(7,4) = Dnbyn(4,7);

Dnbyn(4,8) = 28210;

Dnbyn(8,4) = Dnbyn(4,8);

Dnbyn(5,6) = 677.97;

Dnbyn(6,5) = Dnbyn(5,6);

Dnbyn(5,7) = 9110;

Dnbyn(7,5) = Dnbyn(5,7);

Dnbyn(5,8) = 22270;

Dnbyn(8,5) = Dnbyn(5,8);

Dnbyn(6,7) = 8400;

Dnbyn(7,6) = Dnbyn(6,7);

Dnbyn(6,8) = 21580;

Dnbyn(8,6) = Dnbyn(6,8);

Dnbyn(7,8) = 13340;

Dnbyn(8,7) = Dnbyn(7,8);

DnbynD = Dnbyn;

DnbynC = Dnbyn;
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% Bullfrog max distance limit.

for i = 1:nponds

for j = 1:nponds

if DnbynC(i,j) > 5600

DnbynC(i,j) = 0;

end

end

end

% CRLF max distance limit.

for i = 1:nponds

for j = 1:nponds

if DnbynD(i,j) > 2800

DnbynD(i,j) = 0;

end

end

end

% Initial conditions.

u = [4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4

4956 42 4 ]; % Initial CRLF population densities.

v = [0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4 9158 754 68 16 4 9158 754 68 16

4 0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4]; % Initial BF population densit ies.

% BF IC for initializing a single frog.

%v = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0];

% Here we initalize a zero vector of the appropriate size that is of a form

% that is easier to work with later on.

draytonii = zeros(nponds * 3,1);

catesbeiana = zeros(nponds * 5,1);

% Now we throw in the inital conditions.
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draytonii(:,1) = u’;

catesbeiana(:,1) = v’;

% Creating zero matrices.

D = zeros(nponds * 3,nponds * 3);

C = zeros(nponds * 5,nponds * 5);

% Number of timesteps in the simulation.

nsteps = 200;

just_2nd_year_juv = zeros(nponds,nsteps+1);

% Parameters.

p1 = 0.025; p2 = 0.25; p3 = 0.4; p4 = 0.5; r = 1500;

s1 = 0.1; s2 = 0.02; sFT = 0.016; s3 = 0.26; s4 = 0.32;

s5 = 0.65; b = 4000; gamma = 0.02; mu = 0.05; eta = 0.033;

% Unknown Parameters.

alphaM1 = 0.001; alphaM2 = 0.0008; alphaM0 = 0.00003;%60 yea r coexistence

%alphaM1 = 0.003; alphaM2 = 0.0001; alphaM0 = 0.00004;%20ye ar coexistence

% w encompasses the range of eradication

for w = 0:0.05:1

for i = 1:nsteps

for j = 1:nponds

% Assigning the constant entries.

D(j * 3-2,3 * j) = r * p4;

D(3 * j,3 * j) = p4;

C(j * 5-1,j * 5-2) = s3;

C(j * 5,j * 5) = s5;

% Here we ensure that overwintering bullfrog tadpoles will n ot

% survive in the seasonal ponds.

if j == 1

C(j * 5-3,j * 5-4) = 0;

elseif j == 2

C(j * 5-3,j * 5-4) = 0;

elseif j == 6
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C(j * 5-3,j * 5-4) = 0;

elseif j == 7

C(j * 5-3,j * 5-4) = 0;

else

C(j * 5-3,j * 5-4) = s1 * exp(-gamma * catesbeiana(5 * j,i));

end

C(j * 5-4,j * 5) = b * s5 * exp(-gamma * catesbeiana(5 * j,i));

end

% Assigning the function entries.

for j = 1:nponds

D(j * 3-1,j * 3-2) = p1 * p2* exp(-eta * draytonii(3 * j,i)-alphaM1

* catesbeiana(5 * j,i)-alphaM0 * catesbeiana(5 * j-4,i));

D(j * 3,j * 3-1) = p3 * exp(-alphaM2 * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-4) = sFT * exp(-mu * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-3) = s2 * exp(-mu * catesbeiana(5 * j,i));

C(j * 5,j * 5-1) = s4;

C(j * 5-4,j * 5) = (1-w) * b* s5 * exp(-gamma * catesbeiana(5 * j,i));

C(j * 5-3,j * 5-4) = (1-w) * s1 * exp(-gamma * catesbeiana(5 * j,i));

% Here we gather the juvenile populations of both species sin ce

% they will be the only indiviuals moving between ponds.

Juv_D(j,1)=draytonii(j * 3-1,i);

Juv_C1(j,1)=catesbeiana(j * 5-2,i);

Juv_C2(j,1)=catesbeiana(j * 5-1,i);

% This bit calculates the habitat quality related movement

% probability.

Ad_C(j,1) = catesbeiana(j * 5,i);

if Ad_C(j)==0

Ad_C(j)=1;

end

if Ad_C(j)<1

Ad_C(j)=1;

else

Ad_C(j)=1-(1/(Ad_C(j)));

end

if Ad_C(j)==0



90

Ad_C(j)=1;

end

end

% Here we create our gamma distributions which tells us what p roportion

% of the juvenile population will move to which pond. Note tha t since

% this is the ’stochastic’ version of the simulation, we upda te the

% gamma distribution every year (time step) for each pond.

% Furthermore, each updated gamma distribution is dependen t upon the

% source pond’s juvenile population. Distance values are dr awn and

% used to calculate proportions of moving individuals based on

% information from their corresponding gamma distribution to obtain

% rates of dispersion (immigration out of a pond).

[R_D] = calculate_rij_stoch_Dnew(DnbynD,Juv_D);

[R_C1] = calculate_rij_stoch_Cnew(DnbynC,Juv_C1);

[R_C2] = calculate_rij_stoch_Cnew(DnbynC,Juv_C2);

% This part implements the stage specific movement rules.

newDnbynC2 = zeros(nponds,nponds);

RecipnewDnbynC2 = zeros(nponds,nponds);

[rowC2,colC2] = find(R_C2);

DispDepInflC2 = zeros(nponds,nponds);

for g = 1:length(rowC2)

newDnbynC2(rowC2(g),colC2(g)) = DnbynC(rowC2(g),colC2 (g));

end

for h = 1:nponds

if nnz(R_D(h,:)) > 1

R_D(h,:) = R_D(h,:)/nnz(R_D(h,:));

end

if nnz(R_C1(h,:)) > 1

R_C1(h,:) = R_C1(h,:)/nnz(R_C1(h,:));

end

for k = 1:nponds

if newDnbynC2(h,k)==0
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DispDepInflC2(h,k) = 0;

else

RecipnewDnbynC2(h,k) = 1/newDnbynC2(h,k);

end

end

end

for j = 1:length(rowC2)

if colC2(j)==1

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==2

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==6

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==7

R_C2(rowC2(j),colC2(j))=0;

end

end

for h = 1:nponds

for k = 1:nponds

if RecipnewDnbynC2(h,k)˜=0

DispDepInflC2(h,k) = (RecipnewDnbynC2(h,k))/(sum(Reci pnewDnbynC2(h,:)));

end

end

end

for j = 1:nponds

for k = 1:nponds

R_C2(j,k) = R_C2(j,k) * DispDepInflC2(j,k);

end

end

for j = i:nponds

for k = 1:nponds

if Ad_C(j)˜=0

R_D(j,k) = R_D(j,k) * Ad_C(j);

end

end

end
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R_Dtrans = R_D’;

R_C1trans = R_C1’;

R_C2trans = R_C2’;

% Now we create our immigration and emigration vectors. We do it

% by multiplying each row vector of our completed total movem ent

% rate matries R_{D,C1,C2}

for h = 1:nponds

immMatrixJuvD(h,:) = R_D(h,:) * Juv_D(h);

immMatrixJuvC1(h,:) = R_C1(h,:) * Juv_C1(h);

immMatrixJuvC2(h,:) = R_C2(h,:) * Juv_C2(h);

end

immVectorJuvD = sum(immMatrixJuvD,2);

immVectorJuvC1 = sum(immMatrixJuvC1,2);

immVectorJuvC2 = sum(immMatrixJuvC2,2);

emmVectorJuvD = R_Dtrans * Juv_D;

emmVectorJuvC1 = R_C1trans * Juv_C1;

emmVectorJuvC2 = R_C2trans * Juv_C2;

% The following three paragraphs are used mearly to put all th e above

% immigration/emigration information in vectors of the app ropriate size

% to be subtracted from and added to the population vector.

x_JuvD_dummy=[0 0 1];

imm_JuvD=kron(immVectorJuvD’,x_JuvD_dummy);

emm_JuvD=kron(emmVectorJuvD’,x_JuvD_dummy);

x_JuvC1_dummy=[0 0 0 1 0];

imm_JuvC1=kron(immVectorJuvC1’,x_JuvC1_dummy);

emm_JuvC1=kron(emmVectorJuvC1’,x_JuvC1_dummy);

x_JuvC2_dummy=[0 0 0 0 1];

imm_JuvC2=kron(immVectorJuvC2’,x_JuvC2_dummy);

emm_JuvC2=kron(emmVectorJuvC2’,x_JuvC2_dummy);

% Here we update the population vector according to it’s para meters and
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% the immigration/emigration rules outlined above.

draytonii(:,i+1) = D * draytonii(:,i)-imm_JuvD’+emm_JuvD’;

catesbeiana(:,i+1) = C * catesbeiana(:,i)-(imm_JuvC1’+imm_JuvC2’)+

(emm_JuvC1’+emm_JuvC2’);

% This ensures that we do not deal with (or see in the figures)

% negative numbers of frogs.

neg_d=find(draytonii<0); draytonii(neg_d)=0;

neg_c=find(catesbeiana<0); catesbeiana(neg_c)=0;

% Now we want to save this run’s data.

fid = fopen([’Juv_DAt’ num2str(w) ’EffortPondDraining.d at’ ],’a’);

%fprintf(fid, ’%3.6f ’, i);

fprintf(fid, ’%3.6f ’, Juv_D);fprintf(fid,’\n’);

fclose(fid);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code averages out the time series’ created for various levels of

% eradication of bullfrog tadpoles via dip netting or pond dr aining of

% each of the six ponds we are studying. It calls ’data’ which w as

% produced via the code: ’AvePondDraining.m’. This code pro duces a figure

% which shows the average CRLF juvenile population size over various levels

% of eradication (0-100% over 5% increments).

% Here we are calling our data:

JuvD0 = load([’Juv_DAt0EffortPondDraining.dat’]);

JuvD0_05 = load([’Juv_DAt0.05EffortPondDraining.dat’] );

JuvD0_1 = load([’Juv_DAt0.1EffortPondDraining.dat’]);

JuvD0_15 = load([’Juv_DAt0.15EffortPondDraining.dat’] );

JuvD0_2 = load([’Juv_DAt0.2EffortPondDraining.dat’]);

JuvD0_25 = load([’Juv_DAt0.25EffortPondDraining.dat’] );

JuvD0_3 = load([’Juv_DAt0.3EffortPondDraining.dat’]);
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JuvD0_35 = load([’Juv_DAt0.35EffortPondDraining.dat’] );

JuvD0_4 = load([’Juv_DAt0.4EffortPondDraining.dat’]);

JuvD0_45 = load([’Juv_DAt0.45EffortPondDraining.dat’] );

JuvD0_5 = load([’Juv_DAt0.5EffortPondDraining.dat’]);

JuvD0_55 = load([’Juv_DAt0.55EffortPondDraining.dat’] );

JuvD0_6 = load([’Juv_DAt0.6EffortPondDraining.dat’]);

JuvD0_65 = load([’Juv_DAt0.65EffortPondDraining.dat’] );

JuvD0_7 = load([’Juv_DAt0.7EffortPondDraining.dat’]);

JuvD0_75 = load([’Juv_DAt0.75EffortPondDraining.dat’] );

JuvD0_8 = load([’Juv_DAt0.8EffortPondDraining.dat’]);

JuvD0_85 = load([’Juv_DAt0.85EffortPondDraining.dat’] );

JuvD0_9 = load([’Juv_DAt0.9EffortPondDraining.dat’]);

JuvD0_95 = load([’Juv_DAt0.95EffortPondDraining.dat’] );

JuvD1 = load([’Juv_DAt1EffortPondDraining.dat’]);

% In this for-loop, we are arranging the data according to pon d. We only

% collect data from the last 100 years of a 200 year simulation in order to

% exclude any transient behavior that may be present in the be ginning of

% the simulations.

for n = 101:200

PondAD(n-100,1)=JuvD0(n,2);

PondAD(n-100,2)=JuvD0_05(n,2);

PondAD(n-100,3)=JuvD0_1(n,2);

PondAD(n-100,4)=JuvD0_15(n,2);

PondAD(n-100,5)=JuvD0_2(n,2);

PondAD(n-100,6)=JuvD0_25(n,2);

PondAD(n-100,7)=JuvD0_3(n,2);

PondAD(n-100,8)=JuvD0_35(n,2);

PondAD(n-100,9)=JuvD0_4(n,2);

PondAD(n-100,10)=JuvD0_45(n,2);

PondAD(n-100,11)=JuvD0_5(n,2);

PondAD(n-100,12)=JuvD0_55(n,2);

PondAD(n-100,13)=JuvD0_6(n,2);

PondAD(n-100,14)=JuvD0_65(n,2);

PondAD(n-100,15)=JuvD0_7(n,2);

PondAD(n-100,16)=JuvD0_75(n,2);
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PondAD(n-100,17)=JuvD0_8(n,2);

PondAD(n-100,18)=JuvD0_85(n,2);

PondAD(n-100,19)=JuvD0_9(n,2);

PondAD(n-100,20)=JuvD0_95(n,2);

PondAD(n-100,21)=JuvD1(n,2);

PondWD(n-100,1)=JuvD0(n,3);

PondWD(n-100,3)=JuvD0_1(n,3);

PondWD(n-100,4)=JuvD0_15(n,3);

PondWD(n-100,5)=JuvD0_2(n,3);

PondWD(n-100,6)=JuvD0_25(n,3);

PondWD(n-100,7)=JuvD0_3(n,3);

PondWD(n-100,8)=JuvD0_35(n,3);

PondWD(n-100,9)=JuvD0_4(n,3);

PondWD(n-100,10)=JuvD0_45(n,3);

PondWD(n-100,11)=JuvD0_5(n,3);

PondWD(n-100,12)=JuvD0_55(n,3);

PondWD(n-100,13)=JuvD0_6(n,3);

PondWD(n-100,14)=JuvD0_65(n,3);

PondWD(n-100,15)=JuvD0_7(n,3);

PondWD(n-100,16)=JuvD0_75(n,3);

PondWD(n-100,17)=JuvD0_8(n,3);

PondWD(n-100,18)=JuvD0_85(n,3);

PondWD(n-100,19)=JuvD0_9(n,3);

PondWD(n-100,20)=JuvD0_95(n,3);

PondWD(n-100,21)=JuvD1(n,3);

PondCP(n-100,1)=JuvD0(n,4);

PondCP(n-100,2)=JuvD0_05(n,4);

PondCP(n-100,3)=JuvD0_1(n,4);

PondCP(n-100,4)=JuvD0_15(n,4);

PondCP(n-100,5)=JuvD0_2(n,4);

PondCP(n-100,6)=JuvD0_25(n,4);

PondCP(n-100,7)=JuvD0_3(n,4);

PondCP(n-100,8)=JuvD0_35(n,4);

PondCP(n-100,9)=JuvD0_4(n,4);

PondCP(n-100,10)=JuvD0_45(n,4);
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PondCP(n-100,11)=JuvD0_5(n,4);

PondCP(n-100,12)=JuvD0_55(n,4);

PondCP(n-100,13)=JuvD0_6(n,4);

PondCP(n-100,14)=JuvD0_65(n,4);

PondCP(n-100,15)=JuvD0_7(n,4);

PondCP(n-100,16)=JuvD0_75(n,4);

PondCP(n-100,17)=JuvD0_8(n,4);

PondCP(n-100,18)=JuvD0_85(n,4);

PondCP(n-100,19)=JuvD0_9(n,4);

PondCP(n-100,20)=JuvD0_95(n,4);

PondCP(n-100,21)=JuvD1(n,4);

PondOT(n-100,1)=JuvD0(n,5);

PondOT(n-100,2)=JuvD0_05(n,5);

PondOT(n-100,3)=JuvD0_1(n,5);

PondOT(n-100,4)=JuvD0_15(n,5);

PondOT(n-100,5)=JuvD0_2(n,5);

PondOT(n-100,6)=JuvD0_25(n,5);

PondOT(n-100,7)=JuvD0_3(n,5);

PondOT(n-100,8)=JuvD0_35(n,5);

PondOT(n-100,9)=JuvD0_4(n,5);

PondOT(n-100,10)=JuvD0_45(n,5);

PondOT(n-100,11)=JuvD0_5(n,5);

PondOT(n-100,12)=JuvD0_55(n,5);

PondOT(n-100,13)=JuvD0_6(n,5);

PondOT(n-100,14)=JuvD0_65(n,5);

PondOT(n-100,15)=JuvD0_7(n,5);

PondOT(n-100,16)=JuvD0_75(n,5);

PondOT(n-100,17)=JuvD0_8(n,5);

PondOT(n-100,18)=JuvD0_85(n,5);

PondOT(n-100,19)=JuvD0_9(n,5);

PondOT(n-100,20)=JuvD0_95(n,5);

PondOT(n-100,21)=JuvD1(n,5);

PondMP(n-100,1)=JuvD0(n,6);

PondMP(n-100,2)=JuvD0_05(n,6);

PondMP(n-100,3)=JuvD0_1(n,6);
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PondMP(n-100,4)=JuvD0_15(n,6);

PondMP(n-100,5)=JuvD0_2(n,6);

PondMP(n-100,6)=JuvD0_25(n,6);

PondMP(n-100,7)=JuvD0_3(n,6);

PondMP(n-100,8)=JuvD0_35(n,6);

PondMP(n-100,9)=JuvD0_4(n,6);

PondMP(n-100,10)=JuvD0_45(n,6);

PondMP(n-100,11)=JuvD0_5(n,6);

PondMP(n-100,12)=JuvD0_55(n,6);

PondMP(n-100,13)=JuvD0_6(n,6);

PondMP(n-100,14)=JuvD0_65(n,6);

PondMP(n-100,15)=JuvD0_7(n,6);

PondMP(n-100,16)=JuvD0_75(n,6);

PondMP(n-100,17)=JuvD0_8(n,6);

PondMP(n-100,18)=JuvD0_85(n,6);

PondMP(n-100,19)=JuvD0_9(n,6);

PondMP(n-100,20)=JuvD0_95(n,6);

PondMP(n-100,21)=JuvD1(n,6);

PondBL(n-100,1)=JuvD0(n,8);

PondBL(n-100,2)=JuvD0_05(n,8);

PondBL(n-100,3)=JuvD0_1(n,8);

PondBL(n-100,4)=JuvD0_15(n,8);

PondBL(n-100,5)=JuvD0_2(n,8);

PondBL(n-100,6)=JuvD0_25(n,8);

PondBL(n-100,7)=JuvD0_3(n,8);

PondBL(n-100,8)=JuvD0_35(n,8);

PondBL(n-100,9)=JuvD0_4(n,8);

PondBL(n-100,10)=JuvD0_45(n,8);

PondBL(n-100,11)=JuvD0_5(n,8);

PondBL(n-100,12)=JuvD0_55(n,8);

PondBL(n-100,13)=JuvD0_6(n,8);

PondBL(n-100,14)=JuvD0_65(n,8);

PondBL(n-100,15)=JuvD0_7(n,8);

PondBL(n-100,16)=JuvD0_75(n,8);

PondBL(n-100,17)=JuvD0_8(n,8);

PondBL(n-100,18)=JuvD0_85(n,8);
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PondBL(n-100,19)=JuvD0_9(n,8);

PondBL(n-100,20)=JuvD0_95(n,8);

PondBL(n-100,21)=JuvD1(n,8);

end

% Calcultating averages and standard deviations:

t=(0:0.05:1);% Percent eradication incemented.

yAD = mean(PondAD,1);

eAD = std(PondAD,1,1);

yWD = mean(PondWD,1);

eWD = std(PondWD,1,1);

yCP = mean(PondCP,1);

eCP = std(PondCP,1,1);

yOT = mean(PondOT,1);

eOT = std(PondOT,1,1);

yMP = mean(PondMP,1);

eMP = std(PondMP,1,1);

yBL = mean(PondBL,1);

eBL = std(PondBL,1,1);

% Producing the figure:

figure

hold on

errorbar(t,yAD,eAD,’og’);

errorbar(t,yWD,eWD,’xc’);

errorbar(t,yCP,eCP,’xk’);

errorbar(t,yOT,eOT,’xm’);

errorbar(t,yMP,eMP,’or’);

errorbar(t,yBL,eBL,’xb’);

title(’Management: Dip Netting’);

xlabel(’Proportion of Bullfrog Tadpoles Erraticated’);

ylabel(’Average CRLF Juvenile Population’);

legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP’ , ’Pond BL’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code simulates the erection and maintanence of drift f ences every
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% year for 200 years over various levels of eradication of the bullfrog

% metamorphs (0-100%, at 5% increments). Running the code

% DriftFenceFigure.m will produce the figure.

close all;

clear;

% Number of ponds.

nponds = 8;

% Pond distance matrix initialization. Called M in the thesi s.

Dnbyn = zeros(nponds,nponds);

% Pond distance matrix entry values.

Dnbyn(1,2) = 14740;

Dnbyn(2,1) = Dnbyn(1,2);

Dnbyn(1,3) = 15240;

Dnbyn(3,1) = Dnbyn(1,3);

Dnbyn(1,4) = 15640;

Dnbyn(4,1) = Dnbyn(1,4);

Dnbyn(1,5) = 21610;

Dnbyn(5,1) = Dnbyn(1,5);

Dnbyn(1,6) = 22400;

Dnbyn(6,1) = Dnbyn(1,6);

Dnbyn(1,7) = 30830;

Dnbyn(7,1) = Dnbyn(1,7);

Dnbyn(1,8) = 43870;

Dnbyn(8,1) = Dnbyn(1,8);

Dnbyn(2,3) = 519.38;

Dnbyn(3,2) = Dnbyn(2,3);

Dnbyn(2,4) = 885.14;

Dnbyn(4,2) = Dnbyn(2,4);

Dnbyn(2,5) = 6950;
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Dnbyn(5,2) = Dnbyn(2,5);

Dnbyn(2,6) = 7720;

Dnbyn(6,2) = Dnbyn(2,6);

Dnbyn(2,7) = 16130;

Dnbyn(7,2) = Dnbyn(2,7);

Dnbyn(2,8) = 29130;

Dnbyn(8,2) = Dnbyn(2,8);

Dnbyn(3,4) = 541.12;

Dnbyn(4,3) = Dnbyn(3,4);

Dnbyn(3,5) = 6440;

Dnbyn(5,3) = Dnbyn(3,5);

Dnbyn(3,6) = 7210;

Dnbyn(6,3) = Dnbyn(3,6);

Dnbyn(3,7) = 15610;

Dnbyn(7,3) = Dnbyn(3,7);

Dnbyn(3,8) = 28650;

Dnbyn(8,3) = Dnbyn(3,8);

Dnbyn(4,5) = 6040;

Dnbyn(5,4) = Dnbyn(4,5);

Dnbyn(4,6) = 6840;

Dnbyn(6,4) = Dnbyn(4,6);

Dnbyn(4,7) = 15210;

Dnbyn(7,4) = Dnbyn(4,7);

Dnbyn(4,8) = 28210;

Dnbyn(8,4) = Dnbyn(4,8);

Dnbyn(5,6) = 677.97;

Dnbyn(6,5) = Dnbyn(5,6);

Dnbyn(5,7) = 9110;

Dnbyn(7,5) = Dnbyn(5,7);

Dnbyn(5,8) = 22270;

Dnbyn(8,5) = Dnbyn(5,8);

Dnbyn(6,7) = 8400;

Dnbyn(7,6) = Dnbyn(6,7);
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Dnbyn(6,8) = 21580;

Dnbyn(8,6) = Dnbyn(6,8);

Dnbyn(7,8) = 13340;

Dnbyn(8,7) = Dnbyn(7,8);

DnbynD = Dnbyn;

DnbynC = Dnbyn;

% Bullfrog max distance.

for i = 1:nponds

for j = 1:nponds

if DnbynC(i,j) > 5600

DnbynC(i,j) = 0;

end

end

end

% CRLF max distance.

for i = 1:nponds

for j = 1:nponds

if DnbynD(i,j) > 2800

DnbynD(i,j) = 0;

end

end

end

% Initial conditions.

u = [4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4

4956 42 4 ]; % Initial CRLF population densities.

v = [0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4 9158 754 68 16 4 9158 754 68 16

4 0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4]; % Initial BF population densit ies.

% IC for initializing a single bullfrog.

%v = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0];

% Here we initalize a zero vector of the appropriate size that is of a form

% that is easier to work with later on.

draytonii = zeros(nponds * 3,1);

catesbeiana = zeros(nponds * 5,1);

% Now we throw in the inital conditions.

draytonii(:,1) = u’;

catesbeiana(:,1) = v’;

% Creating zero matrices.

D = zeros(nponds * 3,nponds * 3);

C = zeros(nponds * 5,nponds * 5);

% Number of timesteps in the simulation.

nsteps = 200;

just_2nd_year_juv = zeros(nponds,nsteps+1);

% Parameters.

p1 = 0.025; p2 = 0.25; p3 = 0.4; p4 = 0.5; r = 1500;

s1 = 0.1; s2 = 0.02; sFT = 0.016; s3 = 0.26; s4 = 0.32;

s5 = 0.65; b = 4000; gamma = 0.02; mu = 0.05; eta = 0.033;

% Unknown parameters.

%alphaM1 = 0.01; alphaM2 = 0.002; alphaM0 = 0.00002;%200yea r coexistence

%alphaM1 = 0.01; alphaM2 = 0.003; alphaM0 = 0.00002;%100yea r coexistence

alphaM1 = 0.001; alphaM2 = 0.0008; alphaM0 = 0.00003;%60 yea r coexistence

%alphaM1 = 0.003; alphaM2 = 0.0001; alphaM0 = 0.00004;%20ye ar coexistence

% w is level of eradication.

for w = 0:0.05:1

for i = 1:nsteps

for j = 1:nponds

% Assigning the constant entries.

D(j * 3-2,3 * j) = r * p4;
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D(3 * j,3 * j) = p4;

C(j * 5-1,j * 5-2) = s3;

C(j * 5,j * 5) = s5;

% Here we ensure that overwintering bullfrog tadpoles will n ot

% survive in the seasonal ponds.

if j == 1

C(j * 5-3,j * 5-4) = 0;

elseif j == 2

C(j * 5-3,j * 5-4) = 0;

elseif j == 6

C(j * 5-3,j * 5-4) = 0;

elseif j == 7

C(j * 5-3,j * 5-4) = 0;

else

C(j * 5-3,j * 5-4) = s1 * exp(-gamma * catesbeiana(5 * j,i));

end

C(j * 5-4,j * 5) = b * s5 * exp(-gamma * catesbeiana(5 * j,i));

end

% Assigning the function entries.

for j = 1:nponds

D(j * 3-1,j * 3-2) = p1 * p2* exp(-eta * draytonii(3 * j,i)-alphaM1

* catesbeiana(5 * j,i)-alphaM0 * catesbeiana(5 * j-4,i));

D(j * 3,j * 3-1) = p3 * exp(-alphaM2 * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-4) = sFT * exp(-mu * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-3) = s2 * exp(-mu * catesbeiana(5 * j,i));

C(j * 5,j * 5-1) = s4;

% Applying eradication effort.

C(j * 5-2,j * 5-3) = (1-w) * s2 * exp(-mu * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-4) = (1-w) * sFT* exp(-mu * catesbeiana(5 * j,i));

% Here we gather the juvenile populations of both species sin ce

% they will be the only indiviuals moving between ponds.

Juv_D(j,1)=draytonii(j * 3-1,i);

Juv_C1(j,1)=catesbeiana(j * 5-2,i);
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Juv_C2(j,1)=catesbeiana(j * 5-1,i);

% CRLF habitat quality indicator calculation.

Ad_C(j,1) = catesbeiana(j * 5,i);

if Ad_C(j)==0

Ad_C(j)=1;

end

if Ad_C(j)<1

Ad_C(j)=1;

else

Ad_C(j)=1-(1/(Ad_C(j)));

end

if Ad_C(j)==0

Ad_C(j)=1;

end

end

% Here we create our gamma distributions which tells us what p roportion

% of the juvenile population will move to which pond. Note tha t since

% this is the ’stochastic’ version of the simulation, we upda te the

% gamma distribution every year (time step) for each pond.

% Furthermore, each updated gamma distribution is dependen t upon the

% source pond’s juvenile population. Distance values are dr awn and

% used in their corresponding gamma distribution to obtain r ates of

% dispersion (immigration out of a pond).

[R_D]=calculate_rij_stoch_Dnew(DnbynD,Juv_D);

[R_C1]=calculate_rij_stoch_Cnew(DnbynC,Juv_C1);

[R_C2]=calculate_rij_stoch_Cnew(DnbynC,Juv_C2);

% Stage specific choice probability calculation.

newDnbynC2 = zeros(nponds,nponds);

RecipnewDnbynC2 = zeros(nponds,nponds);

[rowC2,colC2] = find(R_C2);

DispDepInflC2 = zeros(nponds,nponds);

for g = 1:length(rowC2)

newDnbynC2(rowC2(g),colC2(g)) = DnbynC(rowC2(g),colC2 (g));

end
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for h = 1:nponds

if nnz(R_D(h,:)) > 1

R_D(h,:) = R_D(h,:)/nnz(R_D(h,:));

end

if nnz(R_C1(h,:)) > 1

R_C1(h,:) = R_C1(h,:)/nnz(R_C1(h,:));

end

for k = 1:nponds

if newDnbynC2(h,k)==0

DispDepInflC2(h,k) = 0;

else

RecipnewDnbynC2(h,k) = 1/newDnbynC2(h,k);

end

end

end

for j = 1:length(rowC2)

if colC2(j)==1

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==2

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==6

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==7

R_C2(rowC2(j),colC2(j))=0;

end

end

for h = 1:nponds

for k = 1:nponds

if RecipnewDnbynC2(h,k)˜=0

DispDepInflC2(h,k) = (RecipnewDnbynC2(h,k))/(sum(Reci pnewDnbynC2(h,:)));

end

end

end

for j = 1:nponds

for k = 1:nponds
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R_C2(j,k) = R_C2(j,k) * DispDepInflC2(j,k);

end

end

for j = i:nponds

for k = 1:nponds

if Ad_C(j)˜=0

R_D(j,k) = R_D(j,k) * Ad_C(j);

end

end

end

R_Dtrans = R_D’;

R_C1trans = R_C1’;

R_C2trans = R_C2’;

% Now that we have our total movement probability matrices

% R_{D,C1,C2}, we can now create our immigration vectors by

% multipying each row of the R’s by each pond’s distinct juven ile

% population size.

for h = 1:nponds

immMatrixJuvD(h,:) = R_D(h,:) * Juv_D(h);

immMatrixJuvC1(h,:) = R_C1(h,:) * Juv_C1(h);

immMatrixJuvC2(h,:) = R_C2(h,:) * Juv_C2(h);

end

immVectorJuvD = sum(immMatrixJuvD,2);

immVectorJuvC1 = sum(immMatrixJuvC1,2);

immVectorJuvC2 = sum(immMatrixJuvC2,2);

% Emigration vectors are calcultated by multipying the tras pose of

% the R’s by their corresponding juvenile population vector .

emmVectorJuvD = R_Dtrans * Juv_D;

emmVectorJuvC1 = R_C1trans * Juv_C1;

emmVectorJuvC2 = R_C2trans * Juv_C2;

% The following three paragraphs are used mearly to put all th e above

% immigration/emigration information in vectors of the app ropriate size
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% to be subtracted from and added to the population vector.

x_JuvD_dummy=[0 0 1];

imm_JuvD=kron(immVectorJuvD’,x_JuvD_dummy);

emm_JuvD=kron(emmVectorJuvD’,x_JuvD_dummy);

x_JuvC1_dummy=[0 0 0 1 0];

imm_JuvC1=kron(immVectorJuvC1’,x_JuvC1_dummy);

emm_JuvC1=kron(emmVectorJuvC1’,x_JuvC1_dummy);

x_JuvC2_dummy=[0 0 0 0 1];

imm_JuvC2=kron(immVectorJuvC2’,x_JuvC2_dummy);

emm_JuvC2=kron(emmVectorJuvC2’,x_JuvC2_dummy);

% Here we update the population vector according to it’s para meters and

% the immigration/emigration rules outlined above.

draytonii(:,i+1) = D * draytonii(:,i)-imm_JuvD’+emm_JuvD’;

catesbeiana(:,i+1) = C * catesbeiana(:,i)-(imm_JuvC1’+imm_JuvC2’)

+(emm_JuvC1’+emm_JuvC2’);

% This ensures that we do not deal with (or see in the figures)

% negative numbers of frogs.

neg_d=find(draytonii<0); draytonii(neg_d)=0;

neg_c=find(catesbeiana<0); catesbeiana(neg_c)=0;

% Here we are saving the data from this simulation run.

fid = fopen([’Juv_DAt’ num2str(w) ’EffortDriftFence.dat ’ ],’a’);

%fprintf(fid, ’%3.6f ’, i);

fprintf(fid, ’%3.6f ’, Juv_D);fprintf(fid,’\n’);

fclose(fid);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code averages out the time series’ created for various levels of

% eradication of metamorphic bullfrogs via the erection of a drift fence

% around the shorline of each of the six ponds we are studying. It calls
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% ’data’ which was produced via the code: ’AveDriftFence.m’ . This code

% produces a figure which shows the average CRLF juvenile pop ulation size

% over various levels of eradication (0-100% over 5% increme nts).

% Here we are calling our data:

JuvD0 = load([’Juv_DAt0EffortDriftFence.dat’]);

JuvD0_05 = load([’Juv_DAt0.05EffortDriftFence.dat’]);

JuvD0_1 = load([’Juv_DAt0.1EffortDriftFence.dat’]);

JuvD0_15 = load([’Juv_DAt0.15EffortDriftFence.dat’]);

JuvD0_2 = load([’Juv_DAt0.2EffortDriftFence.dat’]);

JuvD0_25 = load([’Juv_DAt0.25EffortDriftFence.dat’]);

JuvD0_3 = load([’Juv_DAt0.3EffortDriftFence.dat’]);

JuvD0_35 = load([’Juv_DAt0.35EffortDriftFence.dat’]);

JuvD0_4 = load([’Juv_DAt0.4EffortDriftFence.dat’]);

JuvD0_45 = load([’Juv_DAt0.45EffortDriftFence.dat’]);

JuvD0_5 = load([’Juv_DAt0.5EffortDriftFence.dat’]);

JuvD0_55 = load([’Juv_DAt0.55EffortDriftFence.dat’]);

JuvD0_6 = load([’Juv_DAt0.6EffortDriftFence.dat’]);

JuvD0_65 = load([’Juv_DAt0.65EffortDriftFence.dat’]);

JuvD0_7 = load([’Juv_DAt0.7EffortDriftFence.dat’]);

JuvD0_75 = load([’Juv_DAt0.75EffortDriftFence.dat’]);

JuvD0_8 = load([’Juv_DAt0.8EffortDriftFence.dat’]);

JuvD0_85 = load([’Juv_DAt0.85EffortDriftFence.dat’]);

JuvD0_9 = load([’Juv_DAt0.9EffortDriftFence.dat’]);

JuvD0_95 = load([’Juv_DAt0.95EffortDriftFence.dat’]);

JuvD1 = load([’Juv_DAt1EffortDriftFence.dat’]);

% In this for-loop, we are arranging the data according to pon d. We only

% collect data from the last 100 years of a 200 year simulation in order to

% exclude any transient behavior that may be present in the be ginning of

% the simulations.

for n = 101:200

PondAD(n-100,1)=JuvD0(n,2);

PondAD(n-100,2)=JuvD0_05(n,2);

PondAD(n-100,3)=JuvD0_1(n,2);

PondAD(n-100,4)=JuvD0_15(n,2);
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PondAD(n-100,5)=JuvD0_2(n,2);

PondAD(n-100,6)=JuvD0_25(n,2);

PondAD(n-100,7)=JuvD0_3(n,2);

PondAD(n-100,8)=JuvD0_35(n,2);

PondAD(n-100,9)=JuvD0_4(n,2);

PondAD(n-100,10)=JuvD0_45(n,2);

PondAD(n-100,11)=JuvD0_5(n,2);

PondAD(n-100,12)=JuvD0_55(n,2);

PondAD(n-100,13)=JuvD0_6(n,2);

PondAD(n-100,14)=JuvD0_65(n,2);

PondAD(n-100,15)=JuvD0_7(n,2);

PondAD(n-100,16)=JuvD0_75(n,2);

PondAD(n-100,17)=JuvD0_8(n,2);

PondAD(n-100,18)=JuvD0_85(n,2);

PondAD(n-100,19)=JuvD0_9(n,2);

PondAD(n-100,20)=JuvD0_95(n,2);

PondAD(n-100,21)=JuvD1(n,2);

PondWD(n-100,1)=JuvD0(n,3);

PondWD(n-100,3)=JuvD0_1(n,3);

PondWD(n-100,4)=JuvD0_15(n,3);

PondWD(n-100,5)=JuvD0_2(n,3);

PondWD(n-100,6)=JuvD0_25(n,3);

PondWD(n-100,7)=JuvD0_3(n,3);

PondWD(n-100,8)=JuvD0_35(n,3);

PondWD(n-100,9)=JuvD0_4(n,3);

PondWD(n-100,10)=JuvD0_45(n,3);

PondWD(n-100,11)=JuvD0_5(n,3);

PondWD(n-100,12)=JuvD0_55(n,3);

PondWD(n-100,13)=JuvD0_6(n,3);

PondWD(n-100,14)=JuvD0_65(n,3);

PondWD(n-100,15)=JuvD0_7(n,3);

PondWD(n-100,16)=JuvD0_75(n,3);

PondWD(n-100,17)=JuvD0_8(n,3);

PondWD(n-100,18)=JuvD0_85(n,3);

PondWD(n-100,19)=JuvD0_9(n,3);

PondWD(n-100,20)=JuvD0_95(n,3);
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PondWD(n-100,21)=JuvD1(n,3);

PondCP(n-100,1)=JuvD0(n,4);

PondCP(n-100,2)=JuvD0_05(n,4);

PondCP(n-100,3)=JuvD0_1(n,4);

PondCP(n-100,4)=JuvD0_15(n,4);

PondCP(n-100,5)=JuvD0_2(n,4);

PondCP(n-100,6)=JuvD0_25(n,4);

PondCP(n-100,7)=JuvD0_3(n,4);

PondCP(n-100,8)=JuvD0_35(n,4);

PondCP(n-100,9)=JuvD0_4(n,4);

PondCP(n-100,10)=JuvD0_45(n,4);

PondCP(n-100,11)=JuvD0_5(n,4);

PondCP(n-100,12)=JuvD0_55(n,4);

PondCP(n-100,13)=JuvD0_6(n,4);

PondCP(n-100,14)=JuvD0_65(n,4);

PondCP(n-100,15)=JuvD0_7(n,4);

PondCP(n-100,16)=JuvD0_75(n,4);

PondCP(n-100,17)=JuvD0_8(n,4);

PondCP(n-100,18)=JuvD0_85(n,4);

PondCP(n-100,19)=JuvD0_9(n,4);

PondCP(n-100,20)=JuvD0_95(n,4);

PondCP(n-100,21)=JuvD1(n,4);

PondOT(n-100,1)=JuvD0(n,5);

PondOT(n-100,2)=JuvD0_05(n,5);

PondOT(n-100,3)=JuvD0_1(n,5);

PondOT(n-100,4)=JuvD0_15(n,5);

PondOT(n-100,5)=JuvD0_2(n,5);

PondOT(n-100,6)=JuvD0_25(n,5);

PondOT(n-100,7)=JuvD0_3(n,5);

PondOT(n-100,8)=JuvD0_35(n,5);

PondOT(n-100,9)=JuvD0_4(n,5);

PondOT(n-100,10)=JuvD0_45(n,5);

PondOT(n-100,11)=JuvD0_5(n,5);

PondOT(n-100,12)=JuvD0_55(n,5);

PondOT(n-100,13)=JuvD0_6(n,5);
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PondOT(n-100,14)=JuvD0_65(n,5);

PondOT(n-100,15)=JuvD0_7(n,5);

PondOT(n-100,16)=JuvD0_75(n,5);

PondOT(n-100,17)=JuvD0_8(n,5);

PondOT(n-100,18)=JuvD0_85(n,5);

PondOT(n-100,19)=JuvD0_9(n,5);

PondOT(n-100,20)=JuvD0_95(n,5);

PondOT(n-100,21)=JuvD1(n,5);

PondMP(n-100,1)=JuvD0(n,6);

PondMP(n-100,2)=JuvD0_05(n,6);

PondMP(n-100,3)=JuvD0_1(n,6);

PondMP(n-100,4)=JuvD0_15(n,6);

PondMP(n-100,5)=JuvD0_2(n,6);

PondMP(n-100,6)=JuvD0_25(n,6);

PondMP(n-100,7)=JuvD0_3(n,6);

PondMP(n-100,8)=JuvD0_35(n,6);

PondMP(n-100,9)=JuvD0_4(n,6);

PondMP(n-100,10)=JuvD0_45(n,6);

PondMP(n-100,11)=JuvD0_5(n,6);

PondMP(n-100,12)=JuvD0_55(n,6);

PondMP(n-100,13)=JuvD0_6(n,6);

PondMP(n-100,14)=JuvD0_65(n,6);

PondMP(n-100,15)=JuvD0_7(n,6);

PondMP(n-100,16)=JuvD0_75(n,6);

PondMP(n-100,17)=JuvD0_8(n,6);

PondMP(n-100,18)=JuvD0_85(n,6);

PondMP(n-100,19)=JuvD0_9(n,6);

PondMP(n-100,20)=JuvD0_95(n,6);

PondMP(n-100,21)=JuvD1(n,6);

PondBL(n-100,1)=JuvD0(n,8);

PondBL(n-100,2)=JuvD0_05(n,8);

PondBL(n-100,3)=JuvD0_1(n,8);

PondBL(n-100,4)=JuvD0_15(n,8);

PondBL(n-100,5)=JuvD0_2(n,8);

PondBL(n-100,6)=JuvD0_25(n,8);
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PondBL(n-100,7)=JuvD0_3(n,8);

PondBL(n-100,8)=JuvD0_35(n,8);

PondBL(n-100,9)=JuvD0_4(n,8);

PondBL(n-100,10)=JuvD0_45(n,8);

PondBL(n-100,11)=JuvD0_5(n,8);

PondBL(n-100,12)=JuvD0_55(n,8);

PondBL(n-100,13)=JuvD0_6(n,8);

PondBL(n-100,14)=JuvD0_65(n,8);

PondBL(n-100,15)=JuvD0_7(n,8);

PondBL(n-100,16)=JuvD0_75(n,8);

PondBL(n-100,17)=JuvD0_8(n,8);

PondBL(n-100,18)=JuvD0_85(n,8);

PondBL(n-100,19)=JuvD0_9(n,8);

PondBL(n-100,20)=JuvD0_95(n,8);

PondBL(n-100,21)=JuvD1(n,8);

end

% Calcultating averages and standard deviations:

t=(0:0.05:1);% Percent eradication incemented.

yAD = mean(PondAD,1);

eAD = std(PondAD,1,1);

yWD = mean(PondWD,1);

eWD = std(PondWD,1,1);

yCP = mean(PondCP,1);

eCP = std(PondCP,1,1);

yOT = mean(PondOT,1);

eOT = std(PondOT,1,1);

yMP = mean(PondMP,1);

eMP = std(PondMP,1,1);

yBL = mean(PondBL,1);

eBL = std(PondBL,1,1);

% Producing the figure:

figure

hold on

errorbar(t,yAD,eAD,’og’);

errorbar(t,yWD,eWD,’xc’);
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errorbar(t,yCP,eCP,’xk’);

errorbar(t,yOT,eOT,’xm’);

errorbar(t,yMP,eMP,’or’);

errorbar(t,yBL,eBL,’xb’);

title(’Management: Drift Fence’);

xlabel(’Proportion of Bullfrog Metamorphs Erraticated’) ;

ylabel(’Average CRLF Juvenile Population’);

legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP’ , ’Pond BL’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code runs a simulation in which all terrestrial bullfr ogs are shoot

% at various levels of eradication (0-100% at 5% increments) every year for

% 200 years. The data will be saved for the code ShootingFigur e.m to

% produce a figure.

close all;

clear;

% Number of ponds.

nponds = 8;

% Pond distance matrix initialization. In thesis it’s calle d M.

Dnbyn = zeros(nponds,nponds);

% Pond distance matrix entry values.

Dnbyn(1,2) = 14740;

Dnbyn(2,1) = Dnbyn(1,2);

Dnbyn(1,3) = 15240;

Dnbyn(3,1) = Dnbyn(1,3);

Dnbyn(1,4) = 15640;

Dnbyn(4,1) = Dnbyn(1,4);

Dnbyn(1,5) = 21610;

Dnbyn(5,1) = Dnbyn(1,5);
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Dnbyn(1,6) = 22400;

Dnbyn(6,1) = Dnbyn(1,6);

Dnbyn(1,7) = 30830;

Dnbyn(7,1) = Dnbyn(1,7);

Dnbyn(1,8) = 43870;

Dnbyn(8,1) = Dnbyn(1,8);

Dnbyn(2,3) = 519.38;

Dnbyn(3,2) = Dnbyn(2,3);

Dnbyn(2,4) = 885.14;

Dnbyn(4,2) = Dnbyn(2,4);

Dnbyn(2,5) = 6950;

Dnbyn(5,2) = Dnbyn(2,5);

Dnbyn(2,6) = 7720;

Dnbyn(6,2) = Dnbyn(2,6);

Dnbyn(2,7) = 16130;

Dnbyn(7,2) = Dnbyn(2,7);

Dnbyn(2,8) = 29130;

Dnbyn(8,2) = Dnbyn(2,8);

Dnbyn(3,4) = 541.12;

Dnbyn(4,3) = Dnbyn(3,4);

Dnbyn(3,5) = 6440;

Dnbyn(5,3) = Dnbyn(3,5);

Dnbyn(3,6) = 7210;

Dnbyn(6,3) = Dnbyn(3,6);

Dnbyn(3,7) = 15610;

Dnbyn(7,3) = Dnbyn(3,7);

Dnbyn(3,8) = 28650;

Dnbyn(8,3) = Dnbyn(3,8);

Dnbyn(4,5) = 6040;

Dnbyn(5,4) = Dnbyn(4,5);

Dnbyn(4,6) = 6840;

Dnbyn(6,4) = Dnbyn(4,6);

Dnbyn(4,7) = 15210;

Dnbyn(7,4) = Dnbyn(4,7);
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Dnbyn(4,8) = 28210;

Dnbyn(8,4) = Dnbyn(4,8);

Dnbyn(5,6) = 677.97;

Dnbyn(6,5) = Dnbyn(5,6);

Dnbyn(5,7) = 9110;

Dnbyn(7,5) = Dnbyn(5,7);

Dnbyn(5,8) = 22270;

Dnbyn(8,5) = Dnbyn(5,8);

Dnbyn(6,7) = 8400;

Dnbyn(7,6) = Dnbyn(6,7);

Dnbyn(6,8) = 21580;

Dnbyn(8,6) = Dnbyn(6,8);

Dnbyn(7,8) = 13340;

Dnbyn(8,7) = Dnbyn(7,8);

DnbynD = Dnbyn;

DnbynC = Dnbyn;

% Bullfrog max distance.

for i = 1:nponds

for j = 1:nponds

if DnbynC(i,j) > 5600

DnbynC(i,j) = 0;

end

end

end

% CRLF max distance.

for i = 1:nponds

for j = 1:nponds

if DnbynD(i,j) > 2800

DnbynD(i,j) = 0;

end

end
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end

% Initial conditions.

u = [4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4

4956 42 4 ]; % Initial CRLF population densities.

v = [0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4 9158 754 68 16 4 9158 754 68 16

4 0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4]; % Initial BF population densit ies.

% IC for initializing a single bullfrog.

%v = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0];

% Here we initalize a zero vector of the appropriate size that is of a form

% that is easier to work with later on.

draytonii = zeros(nponds * 3,1);

catesbeiana = zeros(nponds * 5,1);

% Now we throw in the inital conditions.

draytonii(:,1) = u’;

catesbeiana(:,1) = v’;

% Creating zero matrices.

D = zeros(nponds * 3,nponds * 3);

C = zeros(nponds * 5,nponds * 5);

% Number of timesteps in the simulation.

nsteps = 200;

% Parameters.

p1 = 0.025; p2 = 0.25; p3 = 0.4; p4 = 0.5; r = 1500;

s1 = 0.1; s2 = 0.02; sFT = 0.016; s3 = 0.26; s4 = 0.32;

s5 = 0.65; b = 4000; gamma = 0.02; mu = 0.05; eta = 0.033;

% Unknown parameters.

%alphaM1 = 0.01; alphaM2 = 0.002; alphaM0 = 0.00002;%200yea r coexistence

%alphaM1 = 0.01; alphaM2 = 0.003; alphaM0 = 0.00002;%100yea r coexistence
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alphaM1 = 0.001; alphaM2 = 0.0008; alphaM0 = 0.00003;%60 yea r coexistence

%alphaM1 = 0.003; alphaM2 = 0.0001; alphaM0 = 0.00004;%20ye ar coexistence

% w is the level of eradication.

for w = 0:0.05:1

for i = 1:nsteps

for j = 1:nponds

% Assigning the constant entries.

D(j * 3-2,3 * j) = r * p4;

D(3 * j,3 * j) = p4;

C(j * 5-1,j * 5-2) = s3;

C(j * 5,j * 5) = s5;

% Here we ensure that overwintering bullfrog tadpoles will n ot

% survive in the seasonal ponds.

if j == 1

C(j * 5-3,j * 5-4) = 0;

elseif j == 2

C(j * 5-3,j * 5-4) = 0;

elseif j == 6

C(j * 5-3,j * 5-4) = 0;

elseif j == 7

C(j * 5-3,j * 5-4) = 0;

else

C(j * 5-3,j * 5-4) = s1 * exp(-gamma * catesbeiana(5 * j,i));

end

C(j * 5-4,j * 5) = b * s5 * exp(-gamma * catesbeiana(5 * j,i));

end

% Assigning the function entries.

for j = 1:nponds

D(j * 3-1,j * 3-2) = p1 * p2* exp(-eta * draytonii(3 * j,i)-alphaM1

* catesbeiana(5 * j,i)-alphaM0 * catesbeiana(5 * j-4,i));

D(j * 3,j * 3-1) = p3 * exp(-alphaM2 * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-4) = sFT * exp(-mu * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-3) = s2 * exp(-mu * catesbeiana(5 * j,i));
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C(j * 5,j * 5-1) = s4;

% Applying eradication effort.

C(j * 5-1,j * 5-2) = (1-w) * s3;

C(j * 5,j * 5-1) = (1-w) * s4;

C(j * 5,j * 5) = (1-w) * s5;

% Here we gather the juvenile populations of both species sin ce

% they will be the only indiviuals moving between ponds.

Juv_D(j,1)=draytonii(j * 3-1,i);

Juv_C1(j,1)=catesbeiana(j * 5-2,i);

Juv_C2(j,1)=catesbeiana(j * 5-1,i);

% Implementing CRLF Habitat quaility indicator.

Ad_C(j,1) = catesbeiana(j * 5,i);

if Ad_C(j)==0

Ad_C(j)=1;

end

if Ad_C(j)<1

Ad_C(j)=1;

else

Ad_C(j)=1-(1/(Ad_C(j)));

end

if Ad_C(j)==0

Ad_C(j)=1;

end

end

% Here we create our gamma distributions which tells us what p roportion

% of the juvenile population will move to which pond. Note tha t since

% this is the ’stochastic’ version of the simulation, we upda te the

% gamma distribution every year (time step) for each pond.

% Furthermore, each updated gamma distribution is dependen t upon the

% source pond’s juvenile population. Distance values are dr awn and

% used in their corresponding gamma distribution to obtain r ates of

% dispersion (immigration out of a pond).

[R_D]=calculate_rij_stoch_Dnew(DnbynD,Juv_D);
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[R_C1]=calculate_rij_stoch_Cnew(DnbynC,Juv_C1);

[R_C2]=calculate_rij_stoch_Cnew(DnbynC,Juv_C2);

% Here we have the stage specific movment rules running.

newDnbynC2 = zeros(nponds,nponds);

RecipnewDnbynC2 = zeros(nponds,nponds);

[rowC2,colC2] = find(R_C2);

DispDepInflC2 = zeros(nponds,nponds);

for g = 1:length(rowC2)

newDnbynC2(rowC2(g),colC2(g)) = DnbynC(rowC2(g),colC2 (g));

end

for h = 1:nponds

if nnz(R_D(h,:)) > 1

R_D(h,:) = R_D(h,:)/nnz(R_D(h,:));

end

if nnz(R_C1(h,:)) > 1

R_C1(h,:) = R_C1(h,:)/nnz(R_C1(h,:));

end

for k = 1:nponds

if newDnbynC2(h,k)==0

DispDepInflC2(h,k) = 0;

else

RecipnewDnbynC2(h,k) = 1/newDnbynC2(h,k);

end

end

end

for j = 1:length(rowC2)

if colC2(j)==1

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==2

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==6

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==7

R_C2(rowC2(j),colC2(j))=0;
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end

end

for h = 1:nponds

for k = 1:nponds

if RecipnewDnbynC2(h,k)˜=0

DispDepInflC2(h,k) = (RecipnewDnbynC2(h,k))/(sum(Reci pnewDnbynC2(h,:)));

end

end

end

for j = 1:nponds

for k = 1:nponds

R_C2(j,k) = R_C2(j,k) * DispDepInflC2(j,k);

end

end

for j = i:nponds

for k = 1:nponds

if Ad_C(j)˜=0

R_D(j,k) = R_D(j,k) * Ad_C(j);

end

end

end

R_Dtrans = R_D’;

R_C1trans = R_C1’;

R_C2trans = R_C2’;

% Here we create the immigration vectors by multiplying each row of

% the R matrices by it’s corresponding juvenile population v ector

% entry.

for h = 1:nponds

immMatrixJuvD(h,:) = R_D(h,:) * Juv_D(h);

immMatrixJuvC1(h,:) = R_C1(h,:) * Juv_C1(h);

immMatrixJuvC2(h,:) = R_C2(h,:) * Juv_C2(h);

end

immVectorJuvD = sum(immMatrixJuvD,2);

immVectorJuvC1 = sum(immMatrixJuvC1,2);

immVectorJuvC2 = sum(immMatrixJuvC2,2);
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% Emigration vector calculation.

emmVectorJuvD = R_Dtrans * Juv_D;

emmVectorJuvC1 = R_C1trans * Juv_C1;

emmVectorJuvC2 = R_C2trans * Juv_C2;

% The following three paragraphs are used mearly to put all th e above

% immigration/emigration information in vectors of the app ropriate size

% to be subtracted from and added to the population vector.

x_JuvD_dummy=[0 0 1];

imm_JuvD=kron(immVectorJuvD’,x_JuvD_dummy);

emm_JuvD=kron(emmVectorJuvD’,x_JuvD_dummy);

x_JuvC1_dummy=[0 0 0 1 0];

imm_JuvC1=kron(immVectorJuvC1’,x_JuvC1_dummy);

emm_JuvC1=kron(emmVectorJuvC1’,x_JuvC1_dummy);

x_JuvC2_dummy=[0 0 0 0 1];

imm_JuvC2=kron(immVectorJuvC2’,x_JuvC2_dummy);

emm_JuvC2=kron(emmVectorJuvC2’,x_JuvC2_dummy);

% Here we update the population vector according to it’s para meters and

% the immigration/emigration rules outlined above.

draytonii(:,i+1) = D * draytonii(:,i)-imm_JuvD’+emm_JuvD’;

catesbeiana(:,i+1) = C * catesbeiana(:,i)-(imm_JuvC1’+imm_JuvC2’)

+(emm_JuvC1’+emm_JuvC2’);

% This ensures that we do not deal with (or see in the figures)

% negative numbers of frogs.

neg_d=find(draytonii<0); draytonii(neg_d)=0;

neg_c=find(catesbeiana<0); catesbeiana(neg_c)=0;

% This bit saves the data we need after each simulation run.

fid = fopen([’Juv_DAt’ num2str(w) ’EffortShooting.dat’ ] ,’a’);

%fprintf(fid, ’%3.6f ’, i);

fprintf(fid, ’%3.6f ’, Juv_D);fprintf(fid,’\n’);
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fclose(fid);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code averages out the time series’ created for various levels of

% eradication of terrestrial bullfrogs via shooting at each of the six

% ponds we are studying. It calls ’data’ which was produced vi a the code:

% ’AveShooting.m’. This code produces a figure which shows t he average

% CRLF juvenile population size over various levels of eradi cation (0-100%

% over 5% increments).

% Here we are calling our data:

JuvD0 = load([’Juv_DAt0EffortShooting.dat’]);

JuvD0_05 = load([’Juv_DAt0.05EffortShooting.dat’]);

JuvD0_1 = load([’Juv_DAt0.1EffortShooting.dat’]);

JuvD0_15 = load([’Juv_DAt0.15EffortShooting.dat’]);

JuvD0_2 = load([’Juv_DAt0.2EffortShooting.dat’]);

JuvD0_25 = load([’Juv_DAt0.25EffortShooting.dat’]);

JuvD0_3 = load([’Juv_DAt0.3EffortShooting.dat’]);

JuvD0_35 = load([’Juv_DAt0.35EffortShooting.dat’]);

JuvD0_4 = load([’Juv_DAt0.4EffortShooting.dat’]);

JuvD0_45 = load([’Juv_DAt0.45EffortShooting.dat’]);

JuvD0_5 = load([’Juv_DAt0.5EffortShooting.dat’]);

JuvD0_55 = load([’Juv_DAt0.55EffortShooting.dat’]);

JuvD0_6 = load([’Juv_DAt0.6EffortShooting.dat’]);

JuvD0_65 = load([’Juv_DAt0.65EffortShooting.dat’]);

JuvD0_7 = load([’Juv_DAt0.7EffortShooting.dat’]);

JuvD0_75 = load([’Juv_DAt0.75EffortShooting.dat’]);

JuvD0_8 = load([’Juv_DAt0.8EffortShooting.dat’]);

JuvD0_85 = load([’Juv_DAt0.85EffortShooting.dat’]);

JuvD0_9 = load([’Juv_DAt0.9EffortShooting.dat’]);

JuvD0_95 = load([’Juv_DAt0.95EffortShooting.dat’]);

JuvD1 = load([’Juv_DAt1EffortShooting.dat’]);

% In this for-loop, we are arranging the data according to pon d. We only
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% collect data from the last 100 years of a 200 year simulation in order to

% exclude any transient behavior that may be present in the be ginning of

% the simulations.

for n = 101:200

PondAD(n-100,1)=JuvD0(n,2);

PondAD(n-100,2)=JuvD0_05(n,2);

PondAD(n-100,3)=JuvD0_1(n,2);

PondAD(n-100,4)=JuvD0_15(n,2);

PondAD(n-100,5)=JuvD0_2(n,2);

PondAD(n-100,6)=JuvD0_25(n,2);

PondAD(n-100,7)=JuvD0_3(n,2);

PondAD(n-100,8)=JuvD0_35(n,2);

PondAD(n-100,9)=JuvD0_4(n,2);

PondAD(n-100,10)=JuvD0_45(n,2);

PondAD(n-100,11)=JuvD0_5(n,2);

PondAD(n-100,12)=JuvD0_55(n,2);

PondAD(n-100,13)=JuvD0_6(n,2);

PondAD(n-100,14)=JuvD0_65(n,2);

PondAD(n-100,15)=JuvD0_7(n,2);

PondAD(n-100,16)=JuvD0_75(n,2);

PondAD(n-100,17)=JuvD0_8(n,2);

PondAD(n-100,18)=JuvD0_85(n,2);

PondAD(n-100,19)=JuvD0_9(n,2);

PondAD(n-100,20)=JuvD0_95(n,2);

PondAD(n-100,21)=JuvD1(n,2);

PondWD(n-100,1)=JuvD0(n,3);

PondWD(n-100,3)=JuvD0_1(n,3);

PondWD(n-100,4)=JuvD0_15(n,3);

PondWD(n-100,5)=JuvD0_2(n,3);

PondWD(n-100,6)=JuvD0_25(n,3);

PondWD(n-100,7)=JuvD0_3(n,3);

PondWD(n-100,8)=JuvD0_35(n,3);

PondWD(n-100,9)=JuvD0_4(n,3);

PondWD(n-100,10)=JuvD0_45(n,3);

PondWD(n-100,11)=JuvD0_5(n,3);
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PondWD(n-100,12)=JuvD0_55(n,3);

PondWD(n-100,13)=JuvD0_6(n,3);

PondWD(n-100,14)=JuvD0_65(n,3);

PondWD(n-100,15)=JuvD0_7(n,3);

PondWD(n-100,16)=JuvD0_75(n,3);

PondWD(n-100,17)=JuvD0_8(n,3);

PondWD(n-100,18)=JuvD0_85(n,3);

PondWD(n-100,19)=JuvD0_9(n,3);

PondWD(n-100,20)=JuvD0_95(n,3);

PondWD(n-100,21)=JuvD1(n,3);

PondCP(n-100,1)=JuvD0(n,4);

PondCP(n-100,2)=JuvD0_05(n,4);

PondCP(n-100,3)=JuvD0_1(n,4);

PondCP(n-100,4)=JuvD0_15(n,4);

PondCP(n-100,5)=JuvD0_2(n,4);

PondCP(n-100,6)=JuvD0_25(n,4);

PondCP(n-100,7)=JuvD0_3(n,4);

PondCP(n-100,8)=JuvD0_35(n,4);

PondCP(n-100,9)=JuvD0_4(n,4);

PondCP(n-100,10)=JuvD0_45(n,4);

PondCP(n-100,11)=JuvD0_5(n,4);

PondCP(n-100,12)=JuvD0_55(n,4);

PondCP(n-100,13)=JuvD0_6(n,4);

PondCP(n-100,14)=JuvD0_65(n,4);

PondCP(n-100,15)=JuvD0_7(n,4);

PondCP(n-100,16)=JuvD0_75(n,4);

PondCP(n-100,17)=JuvD0_8(n,4);

PondCP(n-100,18)=JuvD0_85(n,4);

PondCP(n-100,19)=JuvD0_9(n,4);

PondCP(n-100,20)=JuvD0_95(n,4);

PondCP(n-100,21)=JuvD1(n,4);

PondOT(n-100,1)=JuvD0(n,5);

PondOT(n-100,2)=JuvD0_05(n,5);

PondOT(n-100,3)=JuvD0_1(n,5);

PondOT(n-100,4)=JuvD0_15(n,5);
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PondOT(n-100,5)=JuvD0_2(n,5);

PondOT(n-100,6)=JuvD0_25(n,5);

PondOT(n-100,7)=JuvD0_3(n,5);

PondOT(n-100,8)=JuvD0_35(n,5);

PondOT(n-100,9)=JuvD0_4(n,5);

PondOT(n-100,10)=JuvD0_45(n,5);

PondOT(n-100,11)=JuvD0_5(n,5);

PondOT(n-100,12)=JuvD0_55(n,5);

PondOT(n-100,13)=JuvD0_6(n,5);

PondOT(n-100,14)=JuvD0_65(n,5);

PondOT(n-100,15)=JuvD0_7(n,5);

PondOT(n-100,16)=JuvD0_75(n,5);

PondOT(n-100,17)=JuvD0_8(n,5);

PondOT(n-100,18)=JuvD0_85(n,5);

PondOT(n-100,19)=JuvD0_9(n,5);

PondOT(n-100,20)=JuvD0_95(n,5);

PondOT(n-100,21)=JuvD1(n,5);

PondMP(n-100,1)=JuvD0(n,6);

PondMP(n-100,2)=JuvD0_05(n,6);

PondMP(n-100,3)=JuvD0_1(n,6);

PondMP(n-100,4)=JuvD0_15(n,6);

PondMP(n-100,5)=JuvD0_2(n,6);

PondMP(n-100,6)=JuvD0_25(n,6);

PondMP(n-100,7)=JuvD0_3(n,6);

PondMP(n-100,8)=JuvD0_35(n,6);

PondMP(n-100,9)=JuvD0_4(n,6);

PondMP(n-100,10)=JuvD0_45(n,6);

PondMP(n-100,11)=JuvD0_5(n,6);

PondMP(n-100,12)=JuvD0_55(n,6);

PondMP(n-100,13)=JuvD0_6(n,6);

PondMP(n-100,14)=JuvD0_65(n,6);

PondMP(n-100,15)=JuvD0_7(n,6);

PondMP(n-100,16)=JuvD0_75(n,6);

PondMP(n-100,17)=JuvD0_8(n,6);

PondMP(n-100,18)=JuvD0_85(n,6);

PondMP(n-100,19)=JuvD0_9(n,6);
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PondMP(n-100,20)=JuvD0_95(n,6);

PondMP(n-100,21)=JuvD1(n,6);

PondBL(n-100,1)=JuvD0(n,8);

PondBL(n-100,2)=JuvD0_05(n,8);

PondBL(n-100,3)=JuvD0_1(n,8);

PondBL(n-100,4)=JuvD0_15(n,8);

PondBL(n-100,5)=JuvD0_2(n,8);

PondBL(n-100,6)=JuvD0_25(n,8);

PondBL(n-100,7)=JuvD0_3(n,8);

PondBL(n-100,8)=JuvD0_35(n,8);

PondBL(n-100,9)=JuvD0_4(n,8);

PondBL(n-100,10)=JuvD0_45(n,8);

PondBL(n-100,11)=JuvD0_5(n,8);

PondBL(n-100,12)=JuvD0_55(n,8);

PondBL(n-100,13)=JuvD0_6(n,8);

PondBL(n-100,14)=JuvD0_65(n,8);

PondBL(n-100,15)=JuvD0_7(n,8);

PondBL(n-100,16)=JuvD0_75(n,8);

PondBL(n-100,17)=JuvD0_8(n,8);

PondBL(n-100,18)=JuvD0_85(n,8);

PondBL(n-100,19)=JuvD0_9(n,8);

PondBL(n-100,20)=JuvD0_95(n,8);

PondBL(n-100,21)=JuvD1(n,8);

end

% Calcultating averages and standard deviations:

t=(0:0.05:1); % Percent eradication incemented.

yAD = mean(PondAD,1);

eAD = std(PondAD,1,1);

yWD = mean(PondWD,1);

eWD = std(PondWD,1,1);

yCP = mean(PondCP,1);

eCP = std(PondCP,1,1);

yOT = mean(PondOT,1);

eOT = std(PondOT,1,1);

yMP = mean(PondMP,1);
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eMP = std(PondMP,1,1);

yBL = mean(PondBL,1);

eBL = std(PondBL,1,1);

% Producing the figure:

figure

hold on

errorbar(t,yAD,eAD,’og’);

errorbar(t,yWD,eWD,’xc’);

errorbar(t,yCP,eCP,’xk’);

errorbar(t,yOT,eOT,’xm’);

errorbar(t,yMP,eMP,’or’);

errorbar(t,yBL,eBL,’xb’);

title(’Management: Shooting’);

xlabel(’Proportion of Bullfrogs Erraticated’);

ylabel(’Average CRLF Juvenile Population’);

legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP’ , ’Pond BL’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% In this simulation, we assume ponds are drained every year, then every

% other year, then every two years and so on until there are 15 y ears

% between management applications. Each simulation runs fo r 200 years and

% info is stored in order to create a figure using PondDrainin gSkipFigure.m

close all;

clear;

% Number of ponds.

nponds = 8;

% Pond distance matrix initialization. Called M in thesis.

Dnbyn = zeros(nponds,nponds);
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% Pond distance matrix entry values.

Dnbyn(1,2) = 14740;

Dnbyn(2,1) = Dnbyn(1,2);

Dnbyn(1,3) = 15240;

Dnbyn(3,1) = Dnbyn(1,3);

Dnbyn(1,4) = 15640;

Dnbyn(4,1) = Dnbyn(1,4);

Dnbyn(1,5) = 21610;

Dnbyn(5,1) = Dnbyn(1,5);

Dnbyn(1,6) = 22400;

Dnbyn(6,1) = Dnbyn(1,6);

Dnbyn(1,7) = 30830;

Dnbyn(7,1) = Dnbyn(1,7);

Dnbyn(1,8) = 43870;

Dnbyn(8,1) = Dnbyn(1,8);

Dnbyn(2,3) = 519.38;

Dnbyn(3,2) = Dnbyn(2,3);

Dnbyn(2,4) = 885.14;

Dnbyn(4,2) = Dnbyn(2,4);

Dnbyn(2,5) = 6950;

Dnbyn(5,2) = Dnbyn(2,5);

Dnbyn(2,6) = 7720;

Dnbyn(6,2) = Dnbyn(2,6);

Dnbyn(2,7) = 16130;

Dnbyn(7,2) = Dnbyn(2,7);

Dnbyn(2,8) = 29130;

Dnbyn(8,2) = Dnbyn(2,8);

Dnbyn(3,4) = 541.12;

Dnbyn(4,3) = Dnbyn(3,4);

Dnbyn(3,5) = 6440;

Dnbyn(5,3) = Dnbyn(3,5);

Dnbyn(3,6) = 7210;

Dnbyn(6,3) = Dnbyn(3,6);

Dnbyn(3,7) = 15610;



129

Dnbyn(7,3) = Dnbyn(3,7);

Dnbyn(3,8) = 28650;

Dnbyn(8,3) = Dnbyn(3,8);

Dnbyn(4,5) = 6040;

Dnbyn(5,4) = Dnbyn(4,5);

Dnbyn(4,6) = 6840;

Dnbyn(6,4) = Dnbyn(4,6);

Dnbyn(4,7) = 15210;

Dnbyn(7,4) = Dnbyn(4,7);

Dnbyn(4,8) = 28210;

Dnbyn(8,4) = Dnbyn(4,8);

Dnbyn(5,6) = 677.97;

Dnbyn(6,5) = Dnbyn(5,6);

Dnbyn(5,7) = 9110;

Dnbyn(7,5) = Dnbyn(5,7);

Dnbyn(5,8) = 22270;

Dnbyn(8,5) = Dnbyn(5,8);

Dnbyn(6,7) = 8400;

Dnbyn(7,6) = Dnbyn(6,7);

Dnbyn(6,8) = 21580;

Dnbyn(8,6) = Dnbyn(6,8);

Dnbyn(7,8) = 13340;

Dnbyn(8,7) = Dnbyn(7,8);

DnbynD = Dnbyn;

DnbynC = Dnbyn;

% Bullfrog max distance.

for i = 1:nponds

for j = 1:nponds

if DnbynC(i,j) > 5600

DnbynC(i,j) = 0;

end
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end

end

% CRLF max distance.

for i = 1:nponds

for j = 1:nponds

if DnbynD(i,j) > 2800

DnbynD(i,j) = 0;

end

end

end

% Initial conditions.

u = [4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4

4956 42 4 ]; % Initial CRLF population densities.

v = [0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4 9158 754 68 16 4 9158 754 68 16

4 0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4]; % Initial BF population densit ies.

% Single bullfrog initialization IC.

%v = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0];

% Here we initalize a zero vector of the appropriate size that is of a form

% that is easier to work with later on.

draytonii = zeros(nponds * 3,1);

catesbeiana = zeros(nponds * 5,1);

% Now we throw in the inital conditions.

draytonii(:,1) = u’;

catesbeiana(:,1) = v’;

% Creating zero matrices.

D = zeros(nponds * 3,nponds * 3);

C = zeros(nponds * 5,nponds * 5);

% Number of timesteps in the simulation.

nsteps = 200;
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% Parameters.

p1 = 0.025; p2 = 0.25; p3 = 0.4; p4 = 0.5; r = 1500;

s1 = 0.1; s2 = 0.02; sFT = 0.016; s3 = 0.26; s4 = 0.32;

s5 = 0.65; b = 4000; gamma = 0.02; mu = 0.05; eta = 0.033;

% Unknown parameters.

%alphaM1 = 0.01; alphaM2 = 0.002; alphaM0 = 0.00002;%200yea r coexistence

%alphaM1 = 0.01; alphaM2 = 0.003; alphaM0 = 0.00002;%100yea r coexistence

alphaM1 = 0.001; alphaM2 = 0.0008; alphaM0 = 0.00003;%60 yea r coexistence

%alphaM1 = 0.003; alphaM2 = 0.0001; alphaM0 = 0.00004;%20ye ar coexistence

% f-1 is the number of years skipped.

for f = 1:1:16

for i = 1:nsteps

for j = 1:nponds

% Assigning the constant entries.

D(j * 3-2,3 * j) = r * p4;

D(3 * j,3 * j) = p4;

C(j * 5-1,j * 5-2) = s3;

C(j * 5,j * 5) = s5;

% Here we ensure that overwintering bullfrog tadpoles will n ot

% survive in the seasonal ponds.

if j == 1

C(j * 5-3,j * 5-4) = 0;

elseif j == 2

C(j * 5-3,j * 5-4) = 0;

elseif j == 6

C(j * 5-3,j * 5-4) = 0;

elseif j == 7

C(j * 5-3,j * 5-4) = 0;

else

C(j * 5-3,j * 5-4) = s1 * exp(-gamma * catesbeiana(5 * j,i));

end

C(j * 5-4,j * 5) = b * s5 * exp(-gamma * catesbeiana(5 * j,i));

end
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% Assigning the function entries.

for j = 1:nponds

D(j * 3-1,j * 3-2) = p1 * p2* exp(-eta * draytonii(3 * j,i)-alphaM1

* catesbeiana(5 * j,i)-alphaM0 * catesbeiana(5 * j-4,i));

D(j * 3,j * 3-1) = p3 * exp(-alphaM2 * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-4) = sFT * exp(-mu * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-3) = s2 * exp(-mu * catesbeiana(5 * j,i));

C(j * 5,j * 5-1) = s4;

if rem(i,f)==0

C(j * 5-4,j * 5) = 0;

C(j * 5-3,j * 5-4) = 0;

end

% Here we gather the juvenile populations of both species sin ce

% they will be the only indiviuals moving between ponds.

Juv_D(j,1)=draytonii(j * 3-1,i);

Juv_C1(j,1)=catesbeiana(j * 5-2,i);

Juv_C2(j,1)=catesbeiana(j * 5-1,i);

% Here we implement the CRLF habitat quality indicator.

Ad_C(j,1) = catesbeiana(j * 5,i);

if Ad_C(j)==0

Ad_C(j)=1;

end

if Ad_C(j)<1

Ad_C(j)=1;

else

Ad_C(j)=1-(1/(Ad_C(j)));

end

if Ad_C(j)==0

Ad_C(j)=1;

end

end

% Here we create our gamma distributions which tells us what p roportion

% of the juvenile population will move to which pond. Note tha t since
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% this is the ’stochastic’ version of the simulation, we upda te the

% gamma distribution every year (time step) for each pond.

% Furthermore, each updated gamma distribution is dependen t upon the

% source pond’s juvenile population. Distance values are dr awn and

% used in their corresponding gamma distribution to obtain r ates of

% dispersion (immigration out of a pond).

[R_D]=calculate_rij_stoch_Dnew(DnbynD,Juv_D);

[R_C1]=calculate_rij_stoch_Cnew(DnbynC,Juv_C1);

[R_C2]=calculate_rij_stoch_Cnew(DnbynC,Juv_C2);

% Stage specific choice movement probabilites.

newDnbynC2 = zeros(nponds,nponds);

RecipnewDnbynC2 = zeros(nponds,nponds);

[rowC2,colC2] = find(R_C2);

DispDepInflC2 = zeros(nponds,nponds);

for g = 1:length(rowC2)

newDnbynC2(rowC2(g),colC2(g)) = DnbynC(rowC2(g),colC2 (g));

end

for h = 1:nponds

if nnz(R_D(h,:)) > 1

R_D(h,:) = R_D(h,:)/nnz(R_D(h,:));

end

if nnz(R_C1(h,:)) > 1

R_C1(h,:) = R_C1(h,:)/nnz(R_C1(h,:));

end

for k = 1:nponds

if newDnbynC2(h,k)==0

DispDepInflC2(h,k) = 0;

else

RecipnewDnbynC2(h,k) = 1/newDnbynC2(h,k);

end

end

end

for j = 1:length(rowC2)

if colC2(j)==1
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R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==2

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==6

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==7

R_C2(rowC2(j),colC2(j))=0;

end

end

for h = 1:nponds

for k = 1:nponds

if RecipnewDnbynC2(h,k)˜=0

DispDepInflC2(h,k) = (RecipnewDnbynC2(h,k))/(sum(Reci pnewDnbynC2(h,:)));

end

end

end

for j = 1:nponds

for k = 1:nponds

R_C2(j,k) = R_C2(j,k) * DispDepInflC2(j,k);

end

end

for j = i:nponds

for k = 1:nponds

if Ad_C(j)˜=0

R_D(j,k) = R_D(j,k) * Ad_C(j);

end

end

end

R_Dtrans = R_D’;

R_C1trans = R_C1’;

R_C2trans = R_C2’;

% Immigration vector calculation.

for h = 1:nponds

immMatrixJuvD(h,:) = R_D(h,:) * Juv_D(h);

immMatrixJuvC1(h,:) = R_C1(h,:) * Juv_C1(h);

immMatrixJuvC2(h,:) = R_C2(h,:) * Juv_C2(h);
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end

immVectorJuvD = sum(immMatrixJuvD,2);

immVectorJuvC1 = sum(immMatrixJuvC1,2);

immVectorJuvC2 = sum(immMatrixJuvC2,2);

% Emigration vector caclulation.

emmVectorJuvD = R_Dtrans * Juv_D;

emmVectorJuvC1 = R_C1trans * Juv_C1;

emmVectorJuvC2 = R_C2trans * Juv_C2;

% The following three paragraphs are used mearly to put all th e above

% immigration/emigration information in vectors of the app ropriate size

% to be subtracted from and added to the population vector.

x_JuvD_dummy=[0 0 1];

imm_JuvD=kron(immVectorJuvD’,x_JuvD_dummy);

emm_JuvD=kron(emmVectorJuvD’,x_JuvD_dummy);

x_JuvC1_dummy=[0 0 0 1 0];

imm_JuvC1=kron(immVectorJuvC1’,x_JuvC1_dummy);

emm_JuvC1=kron(emmVectorJuvC1’,x_JuvC1_dummy);

x_JuvC2_dummy=[0 0 0 0 1];

imm_JuvC2=kron(immVectorJuvC2’,x_JuvC2_dummy);

emm_JuvC2=kron(emmVectorJuvC2’,x_JuvC2_dummy);

% Here we update the population vector according to it’s para meters and

% the immigration/emigration rules outlined above.

draytonii(:,i+1) = D * draytonii(:,i)-imm_JuvD’+emm_JuvD’;

catesbeiana(:,i+1) = C * catesbeiana(:,i)-(imm_JuvC1’+imm_JuvC2’)

+(emm_JuvC1’+emm_JuvC2’);

% This ensures that we do not deal with (or see in the figures)

% negative numbers of frogs.

neg_d=find(draytonii<0); draytonii(neg_d)=0;

neg_c=find(catesbeiana<0); catesbeiana(neg_c)=0;
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% Here we save the data every time this simulation runs.

fid = fopen([’Juv_DSkipping’ num2str(f-1) ’YearsPondDra ining.dat’ ],’a’);

%fprintf(fid, ’%3.6f ’, i);

fprintf(fid, ’%3.6f ’, Juv_D);fprintf(fid,’\n’);

fclose(fid);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code makes a figure using data collected by running

% SkipPondDraining.m

% Calling files.

Skip0Year = load(’Juv_DSkipping0YearsPondDraining.dat ’);

Skip1Year = load(’Juv_DSkipping1YearsPondDraining.dat ’);

Skip2Year = load(’Juv_DSkipping2YearsPondDraining.dat ’);

Skip3Year = load(’Juv_DSkipping3YearsPondDraining.dat ’);

Skip4Year = load(’Juv_DSkipping4YearsPondDraining.dat ’);

Skip5Year = load(’Juv_DSkipping5YearsPondDraining.dat ’);

Skip6Year = load(’Juv_DSkipping6YearsPondDraining.dat ’);

Skip7Year = load(’Juv_DSkipping7YearsPondDraining.dat ’);

Skip8Year = load(’Juv_DSkipping8YearsPondDraining.dat ’);

Skip9Year = load(’Juv_DSkipping9YearsPondDraining.dat ’);

Skip10Year = load(’Juv_DSkipping10YearsPondDraining.d at’);

Skip11Year = load(’Juv_DSkipping11YearsPondDraining.d at’);

Skip12Year = load(’Juv_DSkipping12YearsPondDraining.d at’);

Skip13Year = load(’Juv_DSkipping13YearsPondDraining.d at’);

Skip14Year = load(’Juv_DSkipping14YearsPondDraining.d at’);

Skip15Year = load(’Juv_DSkipping15YearsPondDraining.d at’);

% Organization.

for n = 101:200

Pond2(n-100,1)=Skip0Year(n,2);

Pond2(n-100,2)=Skip1Year(n,2);

Pond2(n-100,3)=Skip2Year(n,2);
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Pond2(n-100,4)=Skip3Year(n,2);

Pond2(n-100,5)=Skip4Year(n,2);

Pond2(n-100,6)=Skip5Year(n,2);

Pond2(n-100,7)=Skip6Year(n,2);

Pond2(n-100,8)=Skip7Year(n,2);

Pond2(n-100,9)=Skip8Year(n,2);

Pond2(n-100,10)=Skip9Year(n,2);

Pond2(n-100,11)=Skip10Year(n,2);

Pond2(n-100,12)=Skip11Year(n,2);

Pond2(n-100,13)=Skip12Year(n,2);

Pond2(n-100,14)=Skip13Year(n,2);

Pond2(n-100,15)=Skip14Year(n,2);

Pond2(n-100,16)=Skip15Year(n,2);

Pond3(n-100,1)=Skip0Year(n,3);

Pond3(n-100,2)=Skip1Year(n,3);

Pond3(n-100,3)=Skip2Year(n,3);

Pond3(n-100,4)=Skip3Year(n,3);

Pond3(n-100,5)=Skip4Year(n,3);

Pond3(n-100,6)=Skip5Year(n,3);

Pond3(n-100,7)=Skip6Year(n,3);

Pond3(n-100,8)=Skip7Year(n,3);

Pond3(n-100,9)=Skip8Year(n,3);

Pond3(n-100,10)=Skip9Year(n,3);

Pond3(n-100,11)=Skip10Year(n,3);

Pond3(n-100,12)=Skip11Year(n,3);

Pond3(n-100,13)=Skip12Year(n,3);

Pond3(n-100,14)=Skip13Year(n,3);

Pond3(n-100,15)=Skip14Year(n,3);

Pond3(n-100,16)=Skip15Year(n,3);

Pond4(n-100,1)=Skip0Year(n,4);

Pond4(n-100,2)=Skip1Year(n,4);

Pond4(n-100,3)=Skip2Year(n,4);

Pond4(n-100,4)=Skip3Year(n,4);

Pond4(n-100,5)=Skip4Year(n,4);

Pond4(n-100,6)=Skip5Year(n,4);
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Pond4(n-100,7)=Skip6Year(n,4);

Pond4(n-100,8)=Skip7Year(n,4);

Pond4(n-100,9)=Skip8Year(n,4);

Pond4(n-100,10)=Skip9Year(n,4);

Pond4(n-100,11)=Skip10Year(n,4);

Pond4(n-100,12)=Skip11Year(n,4);

Pond4(n-100,13)=Skip12Year(n,4);

Pond4(n-100,14)=Skip13Year(n,4);

Pond4(n-100,15)=Skip14Year(n,4);

Pond4(n-100,16)=Skip15Year(n,4);

Pond5(n-100,1)=Skip0Year(n,5);

Pond5(n-100,2)=Skip1Year(n,5);

Pond5(n-100,3)=Skip2Year(n,5);

Pond5(n-100,4)=Skip3Year(n,5);

Pond5(n-100,5)=Skip4Year(n,5);

Pond5(n-100,6)=Skip5Year(n,5);

Pond5(n-100,7)=Skip6Year(n,5);

Pond5(n-100,8)=Skip7Year(n,5);

Pond5(n-100,9)=Skip8Year(n,5);

Pond5(n-100,10)=Skip9Year(n,5);

Pond5(n-100,11)=Skip10Year(n,5);

Pond5(n-100,12)=Skip11Year(n,5);

Pond5(n-100,13)=Skip12Year(n,5);

Pond5(n-100,14)=Skip13Year(n,5);

Pond5(n-100,15)=Skip14Year(n,5);

Pond5(n-100,16)=Skip15Year(n,5);

Pond6(n-100,1)=Skip0Year(n,6);

Pond6(n-100,2)=Skip1Year(n,6);

Pond6(n-100,3)=Skip2Year(n,6);

Pond6(n-100,4)=Skip3Year(n,6);

Pond6(n-100,5)=Skip4Year(n,6);

Pond6(n-100,6)=Skip5Year(n,6);

Pond6(n-100,7)=Skip6Year(n,6);

Pond6(n-100,8)=Skip7Year(n,6);

Pond6(n-100,9)=Skip8Year(n,6);
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Pond6(n-100,10)=Skip9Year(n,6);

Pond6(n-100,11)=Skip10Year(n,6);

Pond6(n-100,12)=Skip11Year(n,6);

Pond6(n-100,13)=Skip12Year(n,6);

Pond6(n-100,14)=Skip13Year(n,6);

Pond6(n-100,15)=Skip14Year(n,6);

Pond6(n-100,16)=Skip15Year(n,6);

Pond8(n-100,1)=Skip0Year(n,8);

Pond8(n-100,2)=Skip1Year(n,8);

Pond8(n-100,3)=Skip2Year(n,8);

Pond8(n-100,4)=Skip3Year(n,8);

Pond8(n-100,5)=Skip4Year(n,8);

Pond8(n-100,6)=Skip5Year(n,8);

Pond8(n-100,7)=Skip6Year(n,8);

Pond8(n-100,8)=Skip7Year(n,8);

Pond8(n-100,9)=Skip8Year(n,8);

Pond8(n-100,10)=Skip9Year(n,8);

Pond8(n-100,11)=Skip10Year(n,8);

Pond8(n-100,12)=Skip11Year(n,8);

Pond8(n-100,13)=Skip12Year(n,8);

Pond8(n-100,14)=Skip13Year(n,8);

Pond8(n-100,15)=Skip14Year(n,8);

Pond8(n-100,16)=Skip15Year(n,8);

end

% Mean and SD calculations.

y2 = mean(Pond2,1);

e2 = std(Pond2,1,1);

y3 = mean(Pond3,1);

e3 = std(Pond3,1,1);

y4 = mean(Pond4,1);

e4 = std(Pond4,1,1);

y5 = mean(Pond5,1);

e5 = std(Pond5,1,1);
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y6 = mean(Pond6,1);

e6 = std(Pond6,1,1);

y8 = mean(Pond8,1);

e8 = std(Pond8,1,1);

t = 0:1:15;

% Here’s the figure!

figure(1)

hold on

errorbar(t,y2,e2,’og’);

errorbar(t,y3,e3,’xc’);

errorbar(t,y4,e4,’xk’);

errorbar(t,y5,e5,’xm’);

errorbar(t,y6,e6,’or’);

errorbar(t,y8,e8,’xb’);

title(’Skipping Years: Dip Netting’);

xlabel(’Number of Years Skipped Between Drainings’);

ylabel(’Average CRLF Juvenile Population’);

legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP’ , ’Pond BL’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% In this simulation, we assume ponds have drift fences aroun d them every

% year, then every other year, then every two years and so on un til there

% are 15 years between management applications. Each simula tion runs for

% 200 years and info is stored in order to create a figure using

% DriftFenceSkipFigure.m

close all;

clear;

% Number of ponds.

nponds = 8;
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% Pond distance matrix initialization. Called M in thesis.

Dnbyn = zeros(nponds,nponds);

% Pond distance matrix entry values.

Dnbyn(1,2) = 14740;

Dnbyn(2,1) = Dnbyn(1,2);

Dnbyn(1,3) = 15240;

Dnbyn(3,1) = Dnbyn(1,3);

Dnbyn(1,4) = 15640;

Dnbyn(4,1) = Dnbyn(1,4);

Dnbyn(1,5) = 21610;

Dnbyn(5,1) = Dnbyn(1,5);

Dnbyn(1,6) = 22400;

Dnbyn(6,1) = Dnbyn(1,6);

Dnbyn(1,7) = 30830;

Dnbyn(7,1) = Dnbyn(1,7);

Dnbyn(1,8) = 43870;

Dnbyn(8,1) = Dnbyn(1,8);

Dnbyn(2,3) = 519.38;

Dnbyn(3,2) = Dnbyn(2,3);

Dnbyn(2,4) = 885.14;

Dnbyn(4,2) = Dnbyn(2,4);

Dnbyn(2,5) = 6950;

Dnbyn(5,2) = Dnbyn(2,5);

Dnbyn(2,6) = 7720;

Dnbyn(6,2) = Dnbyn(2,6);

Dnbyn(2,7) = 16130;

Dnbyn(7,2) = Dnbyn(2,7);

Dnbyn(2,8) = 29130;

Dnbyn(8,2) = Dnbyn(2,8);

Dnbyn(3,4) = 541.12;

Dnbyn(4,3) = Dnbyn(3,4);

Dnbyn(3,5) = 6440;
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Dnbyn(5,3) = Dnbyn(3,5);

Dnbyn(3,6) = 7210;

Dnbyn(6,3) = Dnbyn(3,6);

Dnbyn(3,7) = 15610;

Dnbyn(7,3) = Dnbyn(3,7);

Dnbyn(3,8) = 28650;

Dnbyn(8,3) = Dnbyn(3,8);

Dnbyn(4,5) = 6040;

Dnbyn(5,4) = Dnbyn(4,5);

Dnbyn(4,6) = 6840;

Dnbyn(6,4) = Dnbyn(4,6);

Dnbyn(4,7) = 15210;

Dnbyn(7,4) = Dnbyn(4,7);

Dnbyn(4,8) = 28210;

Dnbyn(8,4) = Dnbyn(4,8);

Dnbyn(5,6) = 677.97;

Dnbyn(6,5) = Dnbyn(5,6);

Dnbyn(5,7) = 9110;

Dnbyn(7,5) = Dnbyn(5,7);

Dnbyn(5,8) = 22270;

Dnbyn(8,5) = Dnbyn(5,8);

Dnbyn(6,7) = 8400;

Dnbyn(7,6) = Dnbyn(6,7);

Dnbyn(6,8) = 21580;

Dnbyn(8,6) = Dnbyn(6,8);

Dnbyn(7,8) = 13340;

Dnbyn(8,7) = Dnbyn(7,8);

DnbynD = Dnbyn;

DnbynC = Dnbyn;

% Max distance for bullfrogs.

for i = 1:nponds
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for j = 1:nponds

if DnbynC(i,j) > 5600

DnbynC(i,j) = 0;

end

end

end

% Max distance for CRLFs.

for i = 1:nponds

for j = 1:nponds

if DnbynD(i,j) > 2800

DnbynD(i,j) = 0;

end

end

end

% Initial conditions.

u = [4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4

4956 42 4 ]; % Initial CRLF population densities.

v = [0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4 9158 754 68 16 4 9158 754 68 16

4 0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4]; % Initial BF population densit ies.

% This IC can be used to initialize a single bullfrog.

%v = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0];

% Here we initalize a zero vector of the appropriate size that is of a form

% that is easier to work with later on.

draytonii = zeros(nponds * 3,1);

catesbeiana = zeros(nponds * 5,1);

% Now we throw in the inital conditions.

draytonii(:,1) = u’;

catesbeiana(:,1) = v’;

% Creating zero matrices.
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D = zeros(nponds * 3,nponds * 3);

C = zeros(nponds * 5,nponds * 5);

% Number of timesteps in the simulation.

nsteps = 200;

% Parameters.

p1 = 0.025; p2 = 0.25; p3 = 0.4; p4 = 0.5; r = 1500;

s1 = 0.1; s2 = 0.02; sFT = 0.016; s3 = 0.26; s4 = 0.32;

s5 = 0.65; b = 4000; gamma = 0.02; mu = 0.05; eta = 0.033;

% Unknown parameters.

%alphaM1 = 0.01; alphaM2 = 0.002; alphaM0 = 0.00002;%200yea r coexistence

%alphaM1 = 0.01; alphaM2 = 0.003; alphaM0 = 0.00002;%100yea r coexistence

alphaM1 = 0.001; alphaM2 = 0.0008; alphaM0 = 0.00003;%60 yea r coexistence

%alphaM1 = 0.003; alphaM2 = 0.0001; alphaM0 = 0.00004;%20ye ar coexistence

% f-1 is the number of years skipped.

for f = 1:1:16

for i = 1:nsteps

for j = 1:nponds

% Assigning the constant entries.

D(j * 3-2,3 * j) = r * p4;

D(3 * j,3 * j) = p4;

C(j * 5-1,j * 5-2) = s3;

C(j * 5,j * 5) = s5;

% Here we ensure that overwintering bullfrog tadpoles will n ot

% survive in the seasonal ponds.

if j == 1

C(j * 5-3,j * 5-4) = 0;

elseif j == 2

C(j * 5-3,j * 5-4) = 0;

elseif j == 6

C(j * 5-3,j * 5-4) = 0;

elseif j == 7

C(j * 5-3,j * 5-4) = 0;
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else

C(j * 5-3,j * 5-4) = s1 * exp(-gamma * catesbeiana(5 * j,i));

end

C(j * 5-4,j * 5) = b * s5 * exp(-gamma * catesbeiana(5 * j,i));

end

% Assigning the function entries.

for j = 1:nponds

D(j * 3-1,j * 3-2) = p1 * p2* exp(-eta * draytonii(3 * j,i)-alphaM1

* catesbeiana(5 * j,i)-alphaM0 * catesbeiana(5 * j-4,i));

D(j * 3,j * 3-1) = p3 * exp(-alphaM2 * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-4) = sFT * exp(-mu * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-3) = s2 * exp(-mu * catesbeiana(5 * j,i));

C(j * 5,j * 5-1) = s4;

% Here we are implementing the skipping of years.

if rem(i,f)==0

C(j * 5-2,j * 5-3) = 0;

C(j * 5-2,j * 5-4) = 0;

end

% Here we gather the juvenile populations of both species sin ce

% they will be the only indiviuals moving between ponds.

Juv_D(j,1)=draytonii(j * 3-1,i);

Juv_C1(j,1)=catesbeiana(j * 5-2,i);

Juv_C2(j,1)=catesbeiana(j * 5-1,i);

% This bit does the CRLF habibtat quality indicator.

Ad_C(j,1) = catesbeiana(j * 5,i);

if Ad_C(j)==0

Ad_C(j)=1;

end

if Ad_C(j)<1

Ad_C(j)=1;

else

Ad_C(j)=1-(1/(Ad_C(j)));

end
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if Ad_C(j)==0

Ad_C(j)=1;

end

end

% Here we create our gamma distributions which tells us what p roportion

% of the juvenile population will move to which pond. Note tha t since

% this is the ’stochastic’ version of the simulation, we upda te the

% gamma distribution every year (time step) for each pond.

% Furthermore, each updated gamma distribution is dependen t upon the

% source pond’s juvenile population. Distance values are dr awn and

% used in their corresponding gamma distribution to obtain r ates of

% dispersion (immigration out of a pond).

[R_D]=calculate_rij_stoch_Dnew(DnbynD,Juv_D);

[R_C1]=calculate_rij_stoch_Cnew(DnbynC,Juv_C1);

[R_C2]=calculate_rij_stoch_Cnew(DnbynC,Juv_C2);

% Stage specific choice movement probabilites.

newDnbynC2 = zeros(nponds,nponds);

RecipnewDnbynC2 = zeros(nponds,nponds);

[rowC2,colC2] = find(R_C2);

DispDepInflC2 = zeros(nponds,nponds);

for g = 1:length(rowC2)

newDnbynC2(rowC2(g),colC2(g)) = DnbynC(rowC2(g),colC2 (g));

end

for h = 1:nponds

if nnz(R_D(h,:)) > 1

R_D(h,:) = R_D(h,:)/nnz(R_D(h,:));

end

if nnz(R_C1(h,:)) > 1

R_C1(h,:) = R_C1(h,:)/nnz(R_C1(h,:));

end

for k = 1:nponds

if newDnbynC2(h,k)==0
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DispDepInflC2(h,k) = 0;

else

RecipnewDnbynC2(h,k) = 1/newDnbynC2(h,k);

end

end

end

for j = 1:length(rowC2)

if colC2(j)==1

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==2

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==6

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==7

R_C2(rowC2(j),colC2(j))=0;

end

end

for h = 1:nponds

for k = 1:nponds

if RecipnewDnbynC2(h,k)˜=0

DispDepInflC2(h,k) = (RecipnewDnbynC2(h,k))/(sum(Reci pnewDnbynC2(h,:)));

end

end

end

for j = 1:nponds

for k = 1:nponds

R_C2(j,k) = R_C2(j,k) * DispDepInflC2(j,k);

end

end

for j = i:nponds

for k = 1:nponds

if Ad_C(j)˜=0

R_D(j,k) = R_D(j,k) * Ad_C(j);

end

end

end
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R_Dtrans = R_D’;

R_C1trans = R_C1’;

R_C2trans = R_C2’;

% Immigration vector calculation.

for h = 1:nponds

immMatrixJuvD(h,:) = R_D(h,:) * Juv_D(h);

immMatrixJuvC1(h,:) = R_C1(h,:) * Juv_C1(h);

immMatrixJuvC2(h,:) = R_C2(h,:) * Juv_C2(h);

end

immVectorJuvD = sum(immMatrixJuvD,2);

immVectorJuvC1 = sum(immMatrixJuvC1,2);

immVectorJuvC2 = sum(immMatrixJuvC2,2);

% Emigration vector calclulation.

emmVectorJuvD = R_Dtrans * Juv_D;

emmVectorJuvC1 = R_C1trans * Juv_C1;

emmVectorJuvC2 = R_C2trans * Juv_C2;

% The following three paragraphs are used mearly to put all th e above

% immigration/emigration information in vectors of the app ropriate size

% to be subtracted from and added to the population vector.

x_JuvD_dummy=[0 0 1];

imm_JuvD=kron(immVectorJuvD’,x_JuvD_dummy);

emm_JuvD=kron(emmVectorJuvD’,x_JuvD_dummy);

x_JuvC1_dummy=[0 0 0 1 0];

imm_JuvC1=kron(immVectorJuvC1’,x_JuvC1_dummy);

emm_JuvC1=kron(emmVectorJuvC1’,x_JuvC1_dummy);

x_JuvC2_dummy=[0 0 0 0 1];

imm_JuvC2=kron(immVectorJuvC2’,x_JuvC2_dummy);

emm_JuvC2=kron(emmVectorJuvC2’,x_JuvC2_dummy);

% Here we update the population vector according to it’s para meters and
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% the immigration/emigration rules outlined above.

draytonii(:,i+1) = D * draytonii(:,i)-imm_JuvD’+emm_JuvD’;

catesbeiana(:,i+1) = C * catesbeiana(:,i)-(imm_JuvC1’+imm_JuvC2’)

+(emm_JuvC1’+emm_JuvC2’);

% This ensures that we do not deal with (or see in the figures)

% negative numbers of frogs.

neg_d=find(draytonii<0); draytonii(neg_d)=0;

neg_c=find(catesbeiana<0); catesbeiana(neg_c)=0;

% This saves info for each simulation run.

fid = fopen([’Juv_DSkipping’ num2str(f-1) ’YearsDriftFe nce.dat’ ],’a’);

%fprintf(fid, ’%3.6f ’, i);

fprintf(fid, ’%3.6f ’, Juv_D);fprintf(fid,’\n’);

fclose(fid);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code makes a figure using data collected by running

% SkipDriftFence.m

% Calling files.

Skip0Year = load(’Juv_DSkipping0YearsDriftFence.dat’) ;

Skip1Year = load(’Juv_DSkipping1YearsDriftFence.dat’) ;

Skip2Year = load(’Juv_DSkipping2YearsDriftFence.dat’) ;

Skip3Year = load(’Juv_DSkipping3YearsDriftFence.dat’) ;

Skip4Year = load(’Juv_DSkipping4YearsDriftFence.dat’) ;

Skip5Year = load(’Juv_DSkipping5YearsDriftFence.dat’) ;

Skip6Year = load(’Juv_DSkipping6YearsDriftFence.dat’) ;

Skip7Year = load(’Juv_DSkipping7YearsDriftFence.dat’) ;

Skip8Year = load(’Juv_DSkipping8YearsDriftFence.dat’) ;

Skip9Year = load(’Juv_DSkipping9YearsDriftFence.dat’) ;

Skip10Year = load(’Juv_DSkipping10YearsDriftFence.dat ’);

Skip11Year = load(’Juv_DSkipping11YearsDriftFence.dat ’);

Skip12Year = load(’Juv_DSkipping12YearsDriftFence.dat ’);
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Skip13Year = load(’Juv_DSkipping13YearsDriftFence.dat ’);

Skip14Year = load(’Juv_DSkipping14YearsDriftFence.dat ’);

Skip15Year = load(’Juv_DSkipping15YearsDriftFence.dat ’);

% Organization.

for n = 101:200

Pond2(n-100,1)=Skip0Year(n,2);

Pond2(n-100,2)=Skip1Year(n,2);

Pond2(n-100,3)=Skip2Year(n,2);

Pond2(n-100,4)=Skip3Year(n,2);

Pond2(n-100,5)=Skip4Year(n,2);

Pond2(n-100,6)=Skip5Year(n,2);

Pond2(n-100,7)=Skip6Year(n,2);

Pond2(n-100,8)=Skip7Year(n,2);

Pond2(n-100,9)=Skip8Year(n,2);

Pond2(n-100,10)=Skip9Year(n,2);

Pond2(n-100,11)=Skip10Year(n,2);

Pond2(n-100,12)=Skip11Year(n,2);

Pond2(n-100,13)=Skip12Year(n,2);

Pond2(n-100,14)=Skip13Year(n,2);

Pond2(n-100,15)=Skip14Year(n,2);

Pond2(n-100,16)=Skip15Year(n,2);

Pond3(n-100,1)=Skip0Year(n,3);

Pond3(n-100,2)=Skip1Year(n,3);

Pond3(n-100,3)=Skip2Year(n,3);

Pond3(n-100,4)=Skip3Year(n,3);

Pond3(n-100,5)=Skip4Year(n,3);

Pond3(n-100,6)=Skip5Year(n,3);

Pond3(n-100,7)=Skip6Year(n,3);

Pond3(n-100,8)=Skip7Year(n,3);

Pond3(n-100,9)=Skip8Year(n,3);

Pond3(n-100,10)=Skip9Year(n,3);

Pond3(n-100,11)=Skip10Year(n,3);

Pond3(n-100,12)=Skip11Year(n,3);

Pond3(n-100,13)=Skip12Year(n,3);
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Pond3(n-100,14)=Skip13Year(n,3);

Pond3(n-100,15)=Skip14Year(n,3);

Pond3(n-100,16)=Skip15Year(n,3);

Pond4(n-100,1)=Skip0Year(n,4);

Pond4(n-100,2)=Skip1Year(n,4);

Pond4(n-100,3)=Skip2Year(n,4);

Pond4(n-100,4)=Skip3Year(n,4);

Pond4(n-100,5)=Skip4Year(n,4);

Pond4(n-100,6)=Skip5Year(n,4);

Pond4(n-100,7)=Skip6Year(n,4);

Pond4(n-100,8)=Skip7Year(n,4);

Pond4(n-100,9)=Skip8Year(n,4);

Pond4(n-100,10)=Skip9Year(n,4);

Pond4(n-100,11)=Skip10Year(n,4);

Pond4(n-100,12)=Skip11Year(n,4);

Pond4(n-100,13)=Skip12Year(n,4);

Pond4(n-100,14)=Skip13Year(n,4);

Pond4(n-100,15)=Skip14Year(n,4);

Pond4(n-100,16)=Skip15Year(n,4);

Pond5(n-100,1)=Skip0Year(n,5);

Pond5(n-100,2)=Skip1Year(n,5);

Pond5(n-100,3)=Skip2Year(n,5);

Pond5(n-100,4)=Skip3Year(n,5);

Pond5(n-100,5)=Skip4Year(n,5);

Pond5(n-100,6)=Skip5Year(n,5);

Pond5(n-100,7)=Skip6Year(n,5);

Pond5(n-100,8)=Skip7Year(n,5);

Pond5(n-100,9)=Skip8Year(n,5);

Pond5(n-100,10)=Skip9Year(n,5);

Pond5(n-100,11)=Skip10Year(n,5);

Pond5(n-100,12)=Skip11Year(n,5);

Pond5(n-100,13)=Skip12Year(n,5);

Pond5(n-100,14)=Skip13Year(n,5);

Pond5(n-100,15)=Skip14Year(n,5);

Pond5(n-100,16)=Skip15Year(n,5);
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Pond6(n-100,1)=Skip0Year(n,6);

Pond6(n-100,2)=Skip1Year(n,6);

Pond6(n-100,3)=Skip2Year(n,6);

Pond6(n-100,4)=Skip3Year(n,6);

Pond6(n-100,5)=Skip4Year(n,6);

Pond6(n-100,6)=Skip5Year(n,6);

Pond6(n-100,7)=Skip6Year(n,6);

Pond6(n-100,8)=Skip7Year(n,6);

Pond6(n-100,9)=Skip8Year(n,6);

Pond6(n-100,10)=Skip9Year(n,6);

Pond6(n-100,11)=Skip10Year(n,6);

Pond6(n-100,12)=Skip11Year(n,6);

Pond6(n-100,13)=Skip12Year(n,6);

Pond6(n-100,14)=Skip13Year(n,6);

Pond6(n-100,15)=Skip14Year(n,6);

Pond6(n-100,16)=Skip15Year(n,6);

Pond8(n-100,1)=Skip0Year(n,8);

Pond8(n-100,2)=Skip1Year(n,8);

Pond8(n-100,3)=Skip2Year(n,8);

Pond8(n-100,4)=Skip3Year(n,8);

Pond8(n-100,5)=Skip4Year(n,8);

Pond8(n-100,6)=Skip5Year(n,8);

Pond8(n-100,7)=Skip6Year(n,8);

Pond8(n-100,8)=Skip7Year(n,8);

Pond8(n-100,9)=Skip8Year(n,8);

Pond8(n-100,10)=Skip9Year(n,8);

Pond8(n-100,11)=Skip10Year(n,8);

Pond8(n-100,12)=Skip11Year(n,8);

Pond8(n-100,13)=Skip12Year(n,8);

Pond8(n-100,14)=Skip13Year(n,8);

Pond8(n-100,15)=Skip14Year(n,8);

Pond8(n-100,16)=Skip15Year(n,8);

end



153

% Calculating means and SD’s.

y2 = mean(Pond2,1);

e2 = std(Pond2,1,1);

y3 = mean(Pond3,1);

e3 = std(Pond3,1,1);

y4 = mean(Pond4,1);

e4 = std(Pond4,1,1);

y5 = mean(Pond5,1);

e5 = std(Pond5,1,1);

y6 = mean(Pond6,1);

e6 = std(Pond6,1,1);

y8 = mean(Pond8,1);

e8 = std(Pond8,1,1);

t = 0:1:15;

% The figure!

figure(1)

hold on

errorbar(t,y2,e2,’og’);

errorbar(t,y3,e3,’xc’);

errorbar(t,y4,e4,’xk’);

errorbar(t,y5,e5,’xm’);

errorbar(t,y6,e6,’or’);

errorbar(t,y8,e8,’xb’);

title(’Skipping Years: Drift Fence’);

xlabel(’Number of Years Skipped Between Management Applic ations’);

ylabel(’Average CRLF Juvenile Population’);

legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP’ , ’Pond BL’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% In this simulation, we assume terrestrial bullfrogs are sh ot every

% year, then every other year, then every two years and so on un til there
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% are 15 years between management applications. Each simula tion runs for

% 200 years and info is stored in order to create a figure using

% ShootingSkipFigure.m

close all;

clear;

% Number of ponds.

nponds = 8;

% Pond distance matrix initialization. Called M in thesis.

Dnbyn = zeros(nponds,nponds);

% Pond distance matrix entry values.

Dnbyn(1,2) = 14740;

Dnbyn(2,1) = Dnbyn(1,2);

Dnbyn(1,3) = 15240;

Dnbyn(3,1) = Dnbyn(1,3);

Dnbyn(1,4) = 15640;

Dnbyn(4,1) = Dnbyn(1,4);

Dnbyn(1,5) = 21610;

Dnbyn(5,1) = Dnbyn(1,5);

Dnbyn(1,6) = 22400;

Dnbyn(6,1) = Dnbyn(1,6);

Dnbyn(1,7) = 30830;

Dnbyn(7,1) = Dnbyn(1,7);

Dnbyn(1,8) = 43870;

Dnbyn(8,1) = Dnbyn(1,8);

Dnbyn(2,3) = 519.38;

Dnbyn(3,2) = Dnbyn(2,3);

Dnbyn(2,4) = 885.14;

Dnbyn(4,2) = Dnbyn(2,4);

Dnbyn(2,5) = 6950;
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Dnbyn(5,2) = Dnbyn(2,5);

Dnbyn(2,6) = 7720;

Dnbyn(6,2) = Dnbyn(2,6);

Dnbyn(2,7) = 16130;

Dnbyn(7,2) = Dnbyn(2,7);

Dnbyn(2,8) = 29130;

Dnbyn(8,2) = Dnbyn(2,8);

Dnbyn(3,4) = 541.12;

Dnbyn(4,3) = Dnbyn(3,4);

Dnbyn(3,5) = 6440;

Dnbyn(5,3) = Dnbyn(3,5);

Dnbyn(3,6) = 7210;

Dnbyn(6,3) = Dnbyn(3,6);

Dnbyn(3,7) = 15610;

Dnbyn(7,3) = Dnbyn(3,7);

Dnbyn(3,8) = 28650;

Dnbyn(8,3) = Dnbyn(3,8);

Dnbyn(4,5) = 6040;

Dnbyn(5,4) = Dnbyn(4,5);

Dnbyn(4,6) = 6840;

Dnbyn(6,4) = Dnbyn(4,6);

Dnbyn(4,7) = 15210;

Dnbyn(7,4) = Dnbyn(4,7);

Dnbyn(4,8) = 28210;

Dnbyn(8,4) = Dnbyn(4,8);

Dnbyn(5,6) = 677.97;

Dnbyn(6,5) = Dnbyn(5,6);

Dnbyn(5,7) = 9110;

Dnbyn(7,5) = Dnbyn(5,7);

Dnbyn(5,8) = 22270;

Dnbyn(8,5) = Dnbyn(5,8);

Dnbyn(6,7) = 8400;

Dnbyn(7,6) = Dnbyn(6,7);
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Dnbyn(6,8) = 21580;

Dnbyn(8,6) = Dnbyn(6,8);

Dnbyn(7,8) = 13340;

Dnbyn(8,7) = Dnbyn(7,8);

DnbynD = Dnbyn;

DnbynC = Dnbyn;

% Bullfrog max distance.

for i = 1:nponds

for j = 1:nponds

if DnbynC(i,j) > 5600

DnbynC(i,j) = 0;

end

end

end

% CRLF max distance.

for i = 1:nponds

for j = 1:nponds

if DnbynD(i,j) > 2800

DnbynD(i,j) = 0;

end

end

end

% Initial conditions.

u = [4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4 4956 42 4

4956 42 4 ]; % Initial CRLF population densities.

v = [0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4 9158 754 68 16 4 9158 754 68 16

4 0 0 0 0 0 0 0 0 0 0 9158 754 68 16 4]; % Initial BF population densit ies.

%v = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0];
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% Here we initalize a zero vector of the appropriate size that is of a form

% that is easier to work with later on.

draytonii = zeros(nponds * 3,1);

catesbeiana = zeros(nponds * 5,1);

% Now we throw in the inital conditions.

draytonii(:,1) = u’;

catesbeiana(:,1) = v’;

% Creating zero matrices.

D = zeros(nponds * 3,nponds * 3);

C = zeros(nponds * 5,nponds * 5);

% Number of timesteps in the simulation.

nsteps = 200;

% Parameters.

p1 = 0.025; p2 = 0.25; p3 = 0.4; p4 = 0.5; r = 1500;

s1 = 0.1; s2 = 0.02; sFT = 0.016; s3 = 0.26; s4 = 0.32;

s5 = 0.65; b = 4000; gamma = 0.02; mu = 0.05; eta = 0.033;

% Unknown parameters.

%alphaM1 = 0.01; alphaM2 = 0.002; alphaM0 = 0.00002;%200yea r coexistence

%alphaM1 = 0.01; alphaM2 = 0.003; alphaM0 = 0.00002;%100yea r coexistence

alphaM1 = 0.001; alphaM2 = 0.0008; alphaM0 = 0.00003;%60 yea r coexistence

%alphaM1 = 0.003; alphaM2 = 0.0001; alphaM0 = 0.00004;%20ye ar coexistence

% f-1 is the number of years skipped.

for f = 1:1:16

for i = 1:nsteps

for j = 1:nponds

% Assigning the constant entries.

D(j * 3-2,3 * j) = r * p4;

D(3 * j,3 * j) = p4;

C(j * 5-1,j * 5-2) = s3;

C(j * 5,j * 5) = s5;
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% Here we ensure that overwintering bullfrog tadpoles will n ot

% survive in the seasonal ponds.

if j == 1

C(j * 5-3,j * 5-4) = 0;

elseif j == 2

C(j * 5-3,j * 5-4) = 0;

elseif j == 6

C(j * 5-3,j * 5-4) = 0;

elseif j == 7

C(j * 5-3,j * 5-4) = 0;

else

C(j * 5-3,j * 5-4) = s1 * exp(-gamma * catesbeiana(5 * j,i));

end

C(j * 5-4,j * 5) = b * s5 * exp(-gamma * catesbeiana(5 * j,i));

end

% Assigning the function entries.

for j = 1:nponds

D(j * 3-1,j * 3-2) = p1 * p2* exp(-eta * draytonii(3 * j,i)-alphaM1

* catesbeiana(5 * j,i)-alphaM0 * catesbeiana(5 * j-4,i));

D(j * 3,j * 3-1) = p3 * exp(-alphaM2 * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-4) = sFT * exp(-mu * catesbeiana(5 * j,i));

C(j * 5-2,j * 5-3) = s2 * exp(-mu * catesbeiana(5 * j,i));

C(j * 5,j * 5-1) = s4;

% This is the part that skips years for us.

if rem(i,f)==0

C(j * 5-1,j * 5-2) = 0;

C(j * 5,j * 5-1) = 0;

C(j * 5,j * 5) = 0;

end

% Here we gather the juvenile populations of both species sin ce

% they will be the only indiviuals moving between ponds.

Juv_D(j,1)=draytonii(j * 3-1,i);

Juv_C1(j,1)=catesbeiana(j * 5-2,i);

Juv_C2(j,1)=catesbeiana(j * 5-1,i);
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% CRLF habitat quality indicator.

Ad_C(j,1) = catesbeiana(j * 5,i);

if Ad_C(j)==0

Ad_C(j)=1;

end

if Ad_C(j)<1

Ad_C(j)=1;

else

Ad_C(j)=1-(1/(Ad_C(j)));

end

if Ad_C(j)==0

Ad_C(j)=1;

end

end

% Here we create our gamma distributions which tells us what p roportion

% of the juvenile population will move to which pond. Note tha t since

% this is the ’stochastic’ version of the simulation, we upda te the

% gamma distribution every year (time step) for each pond.

% Furthermore, each updated gamma distribution is dependen t upon the

% source pond’s juvenile population. Distance values are dr awn and

% used in their corresponding gamma distribution to obtain r ates of

% dispersion (immigration out of a pond).

[R_D]=calculate_rij_stoch_Dnew(DnbynD,Juv_D);

[R_C1]=calculate_rij_stoch_Cnew(DnbynC,Juv_C1);

[R_C2]=calculate_rij_stoch_Cnew(DnbynC,Juv_C2);

% Stage specific movement choice probability.

newDnbynC2 = zeros(nponds,nponds);

RecipnewDnbynC2 = zeros(nponds,nponds);

[rowC2,colC2] = find(R_C2);

DispDepInflC2 = zeros(nponds,nponds);

for g = 1:length(rowC2)

newDnbynC2(rowC2(g),colC2(g)) = DnbynC(rowC2(g),colC2 (g));

end

for h = 1:nponds
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if nnz(R_D(h,:)) > 1

R_D(h,:) = R_D(h,:)/nnz(R_D(h,:));

end

if nnz(R_C1(h,:)) > 1

R_C1(h,:) = R_C1(h,:)/nnz(R_C1(h,:));

end

for k = 1:nponds

if newDnbynC2(h,k)==0

DispDepInflC2(h,k) = 0;

else

RecipnewDnbynC2(h,k) = 1/newDnbynC2(h,k);

end

end

end

for j = 1:length(rowC2)

if colC2(j)==1

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==2

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==6

R_C2(rowC2(j),colC2(j))=0;

elseif colC2(j)==7

R_C2(rowC2(j),colC2(j))=0;

end

end

for h = 1:nponds

for k = 1:nponds

if RecipnewDnbynC2(h,k)˜=0

DispDepInflC2(h,k) = (RecipnewDnbynC2(h,k))/(sum(Reci pnewDnbynC2(h,:)));

end

end

end

for j = 1:nponds

for k = 1:nponds

R_C2(j,k) = R_C2(j,k) * DispDepInflC2(j,k);

end
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end

for j = i:nponds

for k = 1:nponds

if Ad_C(j)˜=0

R_D(j,k) = R_D(j,k) * Ad_C(j);

end

end

end

R_Dtrans = R_D’;

R_C1trans = R_C1’;

R_C2trans = R_C2’;

% Immigration vector calculation.

for h = 1:nponds

immMatrixJuvD(h,:) = R_D(h,:) * Juv_D(h);

immMatrixJuvC1(h,:) = R_C1(h,:) * Juv_C1(h);

immMatrixJuvC2(h,:) = R_C2(h,:) * Juv_C2(h);

end

immVectorJuvD = sum(immMatrixJuvD,2);

immVectorJuvC1 = sum(immMatrixJuvC1,2);

immVectorJuvC2 = sum(immMatrixJuvC2,2);

% Emigration vector calculation.

emmVectorJuvD = R_Dtrans * Juv_D;

emmVectorJuvC1 = R_C1trans * Juv_C1;

emmVectorJuvC2 = R_C2trans * Juv_C2;

% The following three paragraphs are used mearly to put all th e above

% immigration/emigration information in vectors of the app ropriate size

% to be subtracted from and added to the population vector.

x_JuvD_dummy=[0 0 1];

imm_JuvD=kron(immVectorJuvD’,x_JuvD_dummy);

emm_JuvD=kron(emmVectorJuvD’,x_JuvD_dummy);

x_JuvC1_dummy=[0 0 0 1 0];
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imm_JuvC1=kron(immVectorJuvC1’,x_JuvC1_dummy);

emm_JuvC1=kron(emmVectorJuvC1’,x_JuvC1_dummy);

x_JuvC2_dummy=[0 0 0 0 1];

imm_JuvC2=kron(immVectorJuvC2’,x_JuvC2_dummy);

emm_JuvC2=kron(emmVectorJuvC2’,x_JuvC2_dummy);

% Here we update the population vector according to it’s para meters and

% the immigration/emigration rules outlined above.

draytonii(:,i+1) = D * draytonii(:,i)-imm_JuvD’+emm_JuvD’;

catesbeiana(:,i+1) = C * catesbeiana(:,i)-(imm_JuvC1’+imm_JuvC2’)

+(emm_JuvC1’+emm_JuvC2’);

% This ensures that we do not deal with (or see in the figures)

% negative numbers of frogs.

neg_d=find(draytonii<0); draytonii(neg_d)=0;

neg_c=find(catesbeiana<0); catesbeiana(neg_c)=0;

% Here we save data for each simulation run.

fid = fopen([’Juv_DSkipping’ num2str(f-1) ’YearsShootin g.dat’ ],’a’);

%fprintf(fid, ’%3.6f ’, i);

fprintf(fid, ’%3.6f ’, Juv_D);fprintf(fid,’\n’);

fclose(fid);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code makes a figure using data collected by running

% SkipShooting.m

% Calling files.

Skip0Year = load(’Juv_DSkipping0YearsShooting.dat’);

Skip1Year = load(’Juv_DSkipping1YearsShooting.dat’);

Skip2Year = load(’Juv_DSkipping2YearsShooting.dat’);

Skip3Year = load(’Juv_DSkipping3YearsShooting.dat’);
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Skip4Year = load(’Juv_DSkipping4YearsShooting.dat’);

Skip5Year = load(’Juv_DSkipping5YearsShooting.dat’);

Skip6Year = load(’Juv_DSkipping6YearsShooting.dat’);

Skip7Year = load(’Juv_DSkipping7YearsShooting.dat’);

Skip8Year = load(’Juv_DSkipping8YearsShooting.dat’);

Skip9Year = load(’Juv_DSkipping9YearsShooting.dat’);

Skip10Year = load(’Juv_DSkipping10YearsShooting.dat’) ;

Skip11Year = load(’Juv_DSkipping11YearsShooting.dat’) ;

Skip12Year = load(’Juv_DSkipping12YearsShooting.dat’) ;

Skip13Year = load(’Juv_DSkipping13YearsShooting.dat’) ;

Skip14Year = load(’Juv_DSkipping14YearsShooting.dat’) ;

Skip15Year = load(’Juv_DSkipping15YearsShooting.dat’) ;

% Organization.

for n = 101:200

Pond2(n-100,1)=Skip0Year(n,2);

Pond2(n-100,2)=Skip1Year(n,2);

Pond2(n-100,3)=Skip2Year(n,2);

Pond2(n-100,4)=Skip3Year(n,2);

Pond2(n-100,5)=Skip4Year(n,2);

Pond2(n-100,6)=Skip5Year(n,2);

Pond2(n-100,7)=Skip6Year(n,2);

Pond2(n-100,8)=Skip7Year(n,2);

Pond2(n-100,9)=Skip8Year(n,2);

Pond2(n-100,10)=Skip9Year(n,2);

Pond2(n-100,11)=Skip10Year(n,2);

Pond2(n-100,12)=Skip11Year(n,2);

Pond2(n-100,13)=Skip12Year(n,2);

Pond2(n-100,14)=Skip13Year(n,2);

Pond2(n-100,15)=Skip14Year(n,2);

Pond2(n-100,16)=Skip15Year(n,2);

Pond3(n-100,1)=Skip0Year(n,3);

Pond3(n-100,2)=Skip1Year(n,3);

Pond3(n-100,3)=Skip2Year(n,3);

Pond3(n-100,4)=Skip3Year(n,3);
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Pond3(n-100,5)=Skip4Year(n,3);

Pond3(n-100,6)=Skip5Year(n,3);

Pond3(n-100,7)=Skip6Year(n,3);

Pond3(n-100,8)=Skip7Year(n,3);

Pond3(n-100,9)=Skip8Year(n,3);

Pond3(n-100,10)=Skip9Year(n,3);

Pond3(n-100,11)=Skip10Year(n,3);

Pond3(n-100,12)=Skip11Year(n,3);

Pond3(n-100,13)=Skip12Year(n,3);

Pond3(n-100,14)=Skip13Year(n,3);

Pond3(n-100,15)=Skip14Year(n,3);

Pond3(n-100,16)=Skip15Year(n,3);

Pond4(n-100,1)=Skip0Year(n,4);

Pond4(n-100,2)=Skip1Year(n,4);

Pond4(n-100,3)=Skip2Year(n,4);

Pond4(n-100,4)=Skip3Year(n,4);

Pond4(n-100,5)=Skip4Year(n,4);

Pond4(n-100,6)=Skip5Year(n,4);

Pond4(n-100,7)=Skip6Year(n,4);

Pond4(n-100,8)=Skip7Year(n,4);

Pond4(n-100,9)=Skip8Year(n,4);

Pond4(n-100,10)=Skip9Year(n,4);

Pond4(n-100,11)=Skip10Year(n,4);

Pond4(n-100,12)=Skip11Year(n,4);

Pond4(n-100,13)=Skip12Year(n,4);

Pond4(n-100,14)=Skip13Year(n,4);

Pond4(n-100,15)=Skip14Year(n,4);

Pond4(n-100,16)=Skip15Year(n,4);

Pond5(n-100,1)=Skip0Year(n,5);

Pond5(n-100,2)=Skip1Year(n,5);

Pond5(n-100,3)=Skip2Year(n,5);

Pond5(n-100,4)=Skip3Year(n,5);

Pond5(n-100,5)=Skip4Year(n,5);

Pond5(n-100,6)=Skip5Year(n,5);

Pond5(n-100,7)=Skip6Year(n,5);
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Pond5(n-100,8)=Skip7Year(n,5);

Pond5(n-100,9)=Skip8Year(n,5);

Pond5(n-100,10)=Skip9Year(n,5);

Pond5(n-100,11)=Skip10Year(n,5);

Pond5(n-100,12)=Skip11Year(n,5);

Pond5(n-100,13)=Skip12Year(n,5);

Pond5(n-100,14)=Skip13Year(n,5);

Pond5(n-100,15)=Skip14Year(n,5);

Pond5(n-100,16)=Skip15Year(n,5);

Pond6(n-100,1)=Skip0Year(n,6);

Pond6(n-100,2)=Skip1Year(n,6);

Pond6(n-100,3)=Skip2Year(n,6);

Pond6(n-100,4)=Skip3Year(n,6);

Pond6(n-100,5)=Skip4Year(n,6);

Pond6(n-100,6)=Skip5Year(n,6);

Pond6(n-100,7)=Skip6Year(n,6);

Pond6(n-100,8)=Skip7Year(n,6);

Pond6(n-100,9)=Skip8Year(n,6);

Pond6(n-100,10)=Skip9Year(n,6);

Pond6(n-100,11)=Skip10Year(n,6);

Pond6(n-100,12)=Skip11Year(n,6);

Pond6(n-100,13)=Skip12Year(n,6);

Pond6(n-100,14)=Skip13Year(n,6);

Pond6(n-100,15)=Skip14Year(n,6);

Pond6(n-100,16)=Skip15Year(n,6);

Pond8(n-100,1)=Skip0Year(n,8);

Pond8(n-100,2)=Skip1Year(n,8);

Pond8(n-100,3)=Skip2Year(n,8);

Pond8(n-100,4)=Skip3Year(n,8);

Pond8(n-100,5)=Skip4Year(n,8);

Pond8(n-100,6)=Skip5Year(n,8);

Pond8(n-100,7)=Skip6Year(n,8);

Pond8(n-100,8)=Skip7Year(n,8);

Pond8(n-100,9)=Skip8Year(n,8);

Pond8(n-100,10)=Skip9Year(n,8);
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Pond8(n-100,11)=Skip10Year(n,8);

Pond8(n-100,12)=Skip11Year(n,8);

Pond8(n-100,13)=Skip12Year(n,8);

Pond8(n-100,14)=Skip13Year(n,8);

Pond8(n-100,15)=Skip14Year(n,8);

Pond8(n-100,16)=Skip15Year(n,8);

end

% Calculating means and SD’s.

y2 = mean(Pond2,1);

e2 = std(Pond2,1,1);

y3 = mean(Pond3,1);

e3 = std(Pond3,1,1);

y4 = mean(Pond4,1);

e4 = std(Pond4,1,1);

y5 = mean(Pond5,1);

e5 = std(Pond5,1,1);

y6 = mean(Pond6,1);

e6 = std(Pond6,1,1);

y8 = mean(Pond8,1);

e8 = std(Pond8,1,1);

t = 0:1:15;

% Here’s our figure!

figure(1)

hold on

errorbar(t,y2,e2,’og’);

errorbar(t,y3,e3,’xc’);

errorbar(t,y4,e4,’xk’);

errorbar(t,y5,e5,’xm’);

errorbar(t,y6,e6,’or’);

errorbar(t,y8,e8,’xb’);
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title(’Skipping Years: Shooting’);

xlabel(’Number of Years Skipped Between Management Applic ations’);

ylabel(’Average CRLF Juvenile Population’);

legend(’Pond AD’, ’Pond WD’, ’Pond CP’, ’Pond OT’, ’Pond MP’ , ’Pond BL’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


