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INTRODUCTION

Microbial processes regulate the availability of
nutrients in the estuarine water column by mediating
the balance among inputs, recycling and removal to
sediments. Nutrient sources to estuaries vary, with
inputs associated with freshwater flow (Peierls et al.
1991), atmospheric deposition (Paerl et al. 2006), sub-
marine groundwater discharge (Santos et al. 2008),
and nitrogen fixation (Gardner et al. 2006, Fulweiler
et al. 2007). Greater recycling of nitrogen by nitrogen
remineralization or the predominance of dissimilatory
nitrate reduction to ammonium over removal of fixed

nitrogen via denitrification can lead to a positive feed-
back at the system level, enhancing eutrophication in
estuaries (Kemp et al. 1990). Nitrification, which is the
oxidation of ammonium to nitrite and then nitrite to
nitrate, can either link remineralization to denitrifica-
tion, leading to nitrogen removal, or result in nitrate
fluxes from sediments to the water column. Thus,
nitrification has a central role in regulating benthic
nitrogen fluxes. Ammonia-oxidizing and nitrite-oxi-
dizing bacteria have been the focus of most research
on nitrification in marine and estuarine environments.
However, recent research suggests that some Crenar-
chaeota may also be responsible for nitrification in
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these environments (Francis et al. 2005, Konneke et
al. 2005, Treusch et al. 2005). Nitrification rates have
been correlated with the abundance of ammonia-oxi-
dizing archaea (AOA) in coastal waters (Wuchter et
al. 2006, Beman et al. 2008). In a comparison of 6 dif-
ferent estuaries, the best factors predicting potential
nitrification rates were sediment chl a, salinity, bottom
water dissolved oxygen (DO) and abundance of AOA
(Caffrey et al. 2007a).

The seasonal variation of benthic microbial pro-
cesses has been thoroughly studied, with temperature
often controlling sediment processes in temperate
estuaries (Cowan et al. 1996). Other important factors
include seasonality of freshwater flows and nutrient
loading, organic matter deposition from spring phyto-
plankton blooms, and bottom water DO concentra-
tions. Sediment denitrification rates are often en-
hanced following pulses of nitrate enriched river water
(Nedwell & Trimmer 1996, Caffrey et al. 2003). Nutri-
ents also stimulate phytoplankton and macroalgal pro-
duction that is subsequently deposited in sediments,
leading to increased benthic respiration, nutrient
regeneration (Jensen et al. 1990, Vidal et al. 1997,
Grenz et al. 2000) and hypoxia (DO < 2 mg l–1) or
anoxia (DO = 0 mg l–1; Viaroli & Christian 2003).

Less is known about daily variation in benthic micro-
bial processes. In estuarine sediments with a water col-
umn depth that is >20 m, daily variation in benthic
fluxes (Nakamura 2003) and denitrification rates
(Hietanen & Kuparinen 2008) is minimal. However, in
shallow subtidal or intertidal sediments, variations in
water level, temperature and light affect microphyto-
benthos productivity (Miles & Sundbäck 2000), which
in turn affect microbial processes and benthic nutrient
fluxes (Feuillet-Girard et al. 1997, Porubsky et al.
2009).

In isolated eutrophic lagoons and ponds, diel
changes in primary production can lead to shifts in DO
concentrations from oxic to anoxic (Krause-Jensen et
al. 1996, Viaroli & Christian 2003), along with changes
in the speciation and redox state of reactive elements
and compounds (Beck & Bruland 2000). In addition to
being dependent on oxygen as an electron acceptor,
nitrification and other aerobic microbial processes are
also influenced by reactive iron, which can provide
protection from inhibition by sulfide (Dollhopf et al.
2005). Anoxia and hypoxia occur in many estuarine
and marine environments (Diaz & Rosenburg 2008).
How does the microbial community, particularly nitri-
fiers, respond to intermittent periods of hypoxia? We
hypothesize that extended periods of hypoxia will
reduce the activity of nitrifiers in estuarine sediments.
This study examines sediment biogeochemistry over a
7 d period before and during hypoxic events in
Elkhorn Slough, CA.

MATERIALS AND METHODS

Study area. Elkhorn Slough is a small estuary in cen-
tral California that connects an intensively farmed
watershed with Monterey Bay. Native grasses border
the lower slopes of Upper Azevedo Pond (subsequently
referred to as Azevedo Pond), while the upper portions
of this subwatershed are farmed for strawberries. Both
North Marsh and South Marsh sites are in the Elkhorn
Slough National Estuarine Research Reserve (NERR).
Land use in the upper portions of North and South
Marsh subwatersheds beyond the Reserve boundary is
primarily residential and agricultural.

Tides in Elkhorn Slough are mixed semidiurnal with
2 unequal high and low tides every 25 h. A railroad
bridge restricts tidal exchange between Azevedo Pond
and the main channel of Elkhorn Slough. North Marsh
has little exchange with the main channel because the
tide gate is set so that exchange only occurs on high
spring tides. South Marsh has regular tidal exchange
with the main channel, although flow is slightly
restricted by a railroad bridge.

Nutrient loading to Elkhorn Slough is dominated by
runoff during the winter rainy season and by up-
welling during the dry season (Chapin et al. 2004, Caf-
frey et al. 2007b). Pulses of high nitrate following rain
events enhance primary production in the upper
Slough and in areas with restricted circulation (Caffrey
et al. 2007b). Previous studies have shown that sites
that are influenced by agricultural runoff have greater
recycling of nutrients and decreased removal pro-
cesses, such as denitrification, than sites in the Reserve
(Caffrey et al. 2003).

Sampling design. Water column and sediment sam-
ples were collected at or just following low tide (lower
low water) from 3 sites: Azevedo Pond (36° 50’ 44.64’’ N,
121° 45’ 13.24’’ W), North Marsh (36° 50’ 04.75’’ N,
121° 44’ 18.33’’ W), and South Marsh (36° 49’ 05.00’’ N,
121° 44’ 21.83’’ W) (Fig. 1). Water depth at each site
during lower low water was ~0.5 m. Each site was sam-
pled 3 × for potential nitrification rates, extractable
nutrients, solid phase Fe, and pore water sulfide. In
addition, benthic fluxes were measured once at
Azevedo Pond on July 13, 2005 and at South Marsh on
July 14, 2005. The sampling sites were adjacent to the
NERR System-Wide Monitoring Program water quality
monitoring sites where temperature, salinity, DO, pH,
turbidity and water level are measured at 0.5 h inter-
vals. Water samples were GF/F filtered for the analysis
of nitrate+nitrite (NO3

–+NO2
–), ammonium (NH4

+), and
dissolved inorganic phosphorus (DIP), and the filters
were analyzed for chl a.

Sediment analyses. Nine sediment cores (corer i.d.
4.6 cm) were collected for potential nitrification,
extractable NH4

+, NO3
–+NO2

–, DIP, solid phase Fe2+,
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total Fe, pore water sulfide, sediment chl a concentra-
tion, water and organic carbon content. Sediments
from 3 cores were sectioned into 0–0.5, 0.5–1, 1–2 and
2–4 cm layers for the measurement of extractable
nutrients. A second set of triplicate cores was sectioned
into 0–0.5, 0.5–1, 1–2 and 2–4 cm layers for the deter-
mination of pore water and organic carbon content.
The top 0–0.5 cm layer was also used for potential
nitrification rate measurements, sediment chl a analy-
ses and nitrifier assemblage composition. Duplicate
samples for potential nitrification were taken from the
top layer to give 6 replicates. The third set of triplicate
cores that were used for Fe and sulfide analyses was
sectioned into individual 0–1, 1–2 and 2–4 cm layers in
a nitrogen-filled glove bag. Sediment sections were
placed in centrifuge tubes and spun for 15 min at
3000 rpm. Overlying water was removed for sulfide
analyses and sediment was retained for Fe analysis.

Potential nitrification rate was measured by incubat-
ing 1 g of sediment with 50 ml of GF/F filtered bottom
water and ammonium chloride (500 µM final concen-
tration) (Henriksen et al. 1981) at room temperature
(~22°C) in the dark on a shaker table. Initial (0 h) and
final (24 h) samples were collected and GF/F filtered
into sample vials and frozen immediately. Samples
were analyzed for NO3

–+NO2
– and NO2

–. Extractable
nutrient concentrations were determined by adding
1 M NaCl (10 ml [10 g wet sediment]–1).

Triplicate cores (corer i.d. 8 cm) were collected at
Azevedo Pond and South Marsh sites for use in mea-
suring benthic fluxes. In the laboratory, overlying
water was replaced with fresh bottom water that was
gently siphoned over the cores to minimize resuspen-
sion of sediments. An additional tube containing only
water was incubated as a control. Magnetically driven
stir bars were used to mix the water at speeds below
the resuspension threshold. Cores were incubated in
the dark at in situ temperatures for 5 h, with samples
being removed hourly (with replacement of bottom
water) for the determination of the N2/Ar ratio, DO,
NH4

+, NO3
–+NO2

– and DIP concentrations.
Analytical techniques. NH4

+ and DIP were analyzed
on a flow injection autoanalyzer (Lachat Quickchem
Series 8500) using the Quikchem methods 31-107-06-
1-B (Liao 2003) for NH4

+ and 31-115-01-1-I (Ammer-
man 2003) for DIP. NO3

–+NO2
– and NO2

– were ana-
lyzed on the same flow injection autoanalyzer using
Quikchem method 31-107-04-1-A (Diamond 1997).
Total sulfide in pore water was analyzed using a
Ag/AgCl electrode. Following the removal of pore
water for sulfide analysis, sediments were extracted
with 0.5 N HCl for the analysis of solid phase iron con-
centrations (Kostka et al. 2002). Ferrozine was used to
measure Fe2+, hydroxylamine was used to reduce total
Fe to Fe2+, and Fe3+ was calculated by difference. Sed-
iment chlorophyll samples were extracted in 10 ml of
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Fig. 1. Locations of (s) sampling sites in Elkhorn Slough, California, USA, (stars) benthic flux sampling sites from previous
studies, and (h) CIMIS (California Irrigation Management Information System) climate sites and the MBARI (Monterey Bay 

Aquarium Research Institute) M2 buoy
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90% acetone, sonicated and read after 24 h on a fluo-
rometer (Turner Designs) (Welschmeyer 1994). The
N2/Ar ratio in water samples that were preserved with
1% ZnCl2 was analyzed on a membrane inlet mass
spectrometer (Kana et al. 1994) at the University of
Georgia (S. Joye Laboratory). We used the Winkler
method to measure DO concentrations (Parsons et al.
1984). Sediment samples were dried at 80°C for 24 h to
determine water content. Organic content was deter-
mined on dried sediments by loss on ignition after
combustion at 500°C for 1 h. Sediment grain size was
determined using the method of Folk (1974), although
we only report percent sand.

Nitrifier assemblage composition. We examined the
composition of the ammonia-oxidizing archaea (AOA)
and ammonia-oxidizing bacteria (AOB) assemblages
in surficial (0–0.5 cm) sediments from the first sam-
pling period. DNA was extracted from sediment sam-
ples using a soil DNA kit (UltraClean, MoBio) accord-
ing to the manufacturer’s recommendations. AOA
amoA genes (635 bp fragment) were amplified using
the primers Arch-amoAF (5’-STAATGGTCTGGCTTA-
GACG-3’) and Arch-amoAR (5’-GCGGCCATCCATC
TGTATGT-3’) (Francis et al. 2005). AOB 16S rRNA
genes (1.1 kb) were amplified with the nitA and nitB
primer set (Voytek & Ward 1995). PCR products of
appropriate size were recovered from an agarose gel
using a gel extraction kit (QiaSpin, Qiagen), and
cloned with the TOPO-TA cloning kit (Invitrogen).
White colonies were selected randomly and grown in
freezing medium in 96-well deep plates (Maniatis et al.
1982). Plasmids were extracted and sequenced at a
commercial facility (SeqWright; DNA Technology Ser-
vices) using the M13F and M13R vector primer. Neigh-
bor-joining phylogenetic trees were constructed from
the sequences using Jukes-Cantor distances. Bootstrap
analysis was used to estimate the reliability of phylo-
genetic reconstructions (100 replicates).

Data sources and analysis. We obtained solar radiation
and air temperature data for 2 sites (Fig. 1), Castroville
and Pajaro, from the California Irrigation Management
Information System (CIMIS; www.cimis.water.ca.gov/
cimis/welcome.jsp). Elkhorn Slough NERR collects
weather data, including photosynthetically active
radiation (PAR), at the South Marsh site. Water
temperature data from Monterey Bay at the M2 buoy
(36.7° N, 122.39° W) were obtained from the Monterey
Bay Aquarium Research Institute (www.mbari.org)
(Fig. 1).

ANOVA was performed on potential nitrification,
sediment chlorophyll, pore water nutrient and sulfide
concentrations and solid phase iron concentrations. For
potential nitrification and sediment chlorophyll data, a
2-factor ANOVA testing the effects of site, time and the
interaction term was conducted. A 3-factor ANOVA

testing the effects of site, time, depth and interaction
terms was conducted for the other variables. Post hoc
least significant difference (LSD) tests were used to
determine significant differences in treatment means.
Correlation analysis was used to examine relationships
among environmental variables. t-tests were used to
test for differences in benthic fluxes between Azevedo
Pond and South Marsh. Data were normalized by log
transformation before analysis when necessary. A
principal components analysis (PCA) included PAR,
water column characteristics (salinity, temperature,
overlying water DO and NO3

–+NO2
– concentrations)

and sediment characteristics (chl a, pore water sulfide,
extractable NH4

+ and P).

RESULTS AND DISCUSSION

Physical setting

Elkhorn Slough was affected by upwelling that
occurred in Monterey Bay between July 11 and 22,
2005. Upwelling of deep water reduced surface water
temperatures in Monterey Bay by 3°C (Fig. 2). The July
12–15 period of most intense upwelling was accompa-
nied by the formation of fog along the coast, lower air
temperatures and reduced solar radiation (Fig. 2).
Reduction in solar radiation was greatest closest to the
mouth of the Slough near the Castroville site and less
inland at the Pajaro site (Fig. 2). The average daily
water temperatures at Azevedo Pond and South Marsh
also declined by ~2°C during this period, while aver-
age daily temperature at North Marsh showed little
change (Table 1). DO concentrations were highest dur-
ing mid-day and lowest at night in all 3 sites (Fig. 3).
Nighttime DO declined over the sampling period as
upwelling intensified, particularly at Azevedo and
South Marsh, leading to longer periods of hypoxia (DO
< 2 mg l–1; Table 1). Daily integrated PAR was signifi-
cantly negatively correlated with the duration of
hypoxia (r = –0.69, p = 0.04).

Water column characteristics

Azevedo Pond had the greatest salinity range, with
values ranging from 31.6 to 40. Salinity ranges in North
Marsh and South Marsh were 31.9 to 37.9 and 32.4 to
34.2, respectively. Low values occurred at higher high
water in all sites, reflecting the incursion of Monterey
Bay water (data not shown), while high values
occurred because of evaporation (Largier et al. 1997).
Water column nutrients at the sites ranged from 0.6 to
7.1 µM NO3

–+NO2
–, <0.5 to 6.4 µM NH4

+ and between
1.3 and 8.1 µM DIP (Table 1).
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Sediment characteristics

The North and South Marsh sites were characterized
by fine grain sediments (12% or less sand), a high
water content (~70%) and an organic content between
9 and 10% (Table 2). In contrast, Azevedo Pond had

sandy sediments (97%), a low water content (21%) and
low organic matter content (0.7%) (Table 2). Sediment
chl a ranged from 9.3 to 28.7 µg cm–2 (Table 1). The
ANOVA revealed that both sampling site and date
were significant factors (ANOVA p < 0.001), with the
post hoc LSD test showing significantly lower concen-
trations at the South Marsh site than at Azevedo Pond
or North Marsh.

Nutrient concentrations that were measured in sedi-
ment extracts varied among sites and with date and
depth in the sediment (Fig. 4). Extractable NH4

+ and
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Site/sampling date Hypoxia Temperature NO3
–+NO2

– NH4
+ DIP Sediment chl a

duration (h) (°C) (µM) (µM) (µM) (µg cm–2)

Azevedo Pond
7/11 4 22.2 0.9 6.0 4.1 28.7 ± 4.1
7/16 10.5 20.8 0.6 3.2 8.1 26.8 ± 2.7
7/18 11 20.7 2.2 <0.5 1.3 24.3 ± 3.9
North Marsh
7/12 0 22.7 1.0 2.5 2.3 28.1 ± 3.1
7/16 4 22.4 0.6 6.4 3.1 26.7 ± 3.4
7/19 7 20.0 0.6 0.8 1.9 11.3 ± 0.2
South Marsh
7/12 1 20.9 2.0 3.9 2.2 11.3 ± 0.7
7/16 3.5 19.7 1.4 6.0 3.4 9.3 ± 0.6
7/19 4.5 18.1 7.1 3.8 2.3 13.5 ± 1.6

Table 1. Duration of water column hypoxia ([O2] < 2 mg l–1) during the 24 h immediately prior to sampling. Temperature, nutri-
ent concentration, and sediment chl a concentrations on each sampling date are also shown. Upwelling began on July 11, 2005. 
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DIP concentrations were significantly correlated (r =
0.77, p = 0.02). Site, date, depth, site × date and site ×
depth were all significant terms (ANOVA p < 0.001) for
NH4

+, while site, site × date and site × depth were the
significant terms for DIP. Both nutrients had signifi-
cantly higher concentrations in Azevedo Pond and at
North Marsh than at South Marsh. Both nutrients sig-

nificantly increased with depth at the North Marsh
site, where NH4

+ concentration in the 2–4 cm depth
interval exceeded 600 nmol cm–3 and DIP concentra-
tions exceeded 60 nmol cm–3 (Fig. 4). Site and depth
were significant terms (ANOVA p < 0.001) for NO3

– +
NO2

–, with significantly higher concentrations above
1 cm than below it. Concentrations were highest at
Azevedo, intermediate at South Marsh and lowest at
North Marsh.

Solid phase Fe2+ and Fe3+ concentrations generally
showed an inverse depth distribution, with higher Fe3+

in the 0–1 cm layer compared to deeper layers
(1–4 cm) and higher Fe2+ in the 2–4 cm layer compared
to the 0–1 cm layer (Fig. 5). Site, date and depth were
significant terms for Fe3+ (ANOVA p < 0.001). Fe3+ was
significantly higher at the South Marsh site than at
North Marsh or Azevedo Pond, the latter 2 sites being
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Site % Sand % Water % Organic matter

Azevedo Pond 97 21 ± 0.4 0.8 ± 0.1
North Marsh 12 74 ± 2.4 10.2 ± 1.8
South Marsh 2 68 ± 1.4 9.1 ± 0.2

Table 2. Sediment characteristics: percent sand, water, and
organic matter content at 0–1 cm depth from the 3 sites. 

Mean ± SE for water and organic matter content
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more hypoxic than South Marsh (Table 1). Fe3+ was
significantly lower on the third sampling date after
upwelling was well established, compared to the first 2
sampling dates. Site, date, depth and site × day were
all significant terms for Fe2+ (ANOVA p < 0.001). Solid
phase Fe2+ concentrations were highest at North
Marsh, intermediate at South Marsh and lowest at
Azevedo Pond (Fig. 5). Site, date, and all interaction
terms were significant for sulfide (ANOVA p < 0.001).
Pore water sulfide concentrations were highest at
North Marsh, intermediate at Azevedo Pond and low-
est at South Marsh (Fig. 5). Pore water sulfide was neg-
atively correlated with PAR (r = –0.69, p = 0.04) and
significantly increased over the sampling period as
upwelling intensified.

The first 3 components of the PCA explained
77% of the variation in the samples. The sites were

separated along the first component, which ex-
plained 38% of the variation. This axis was domi-
nated by salinity, sediment chl a, sediment water
content and extractable DIP. Samples from the
Azevedo Pond site were characterized by high
salinity, sediment chl a and extractable P and lower
water content than samples from South Marsh,
while North Marsh samples were intermediate. The
second axis, which explained 26% of the variation,
was dominated by PAR, temperature, DO and pore
water sulfide and showed how conditions in the
Slough changed from a more oxidized to a less oxi-
dized water column and sediment over the period of
upwelling. The third axis, which explained 13% of
the variation, was dominated by overlying water
NO3

–+NO2
– concentration, extractable NH4

+, and
solid phase Fe3+.
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Microbial processes

Potential nitrification rates ranged from 2.6 to
490 nmol cm–3 h–1, with the highest rates being in
North Marsh during the initial sampling just when
upwelling began to affect the Slough (Fig. 6). Rates
were significantly different among the 3 sites, with the
highest rates being at North Marsh and the lowest
being at Azevedo Pond (ANOVA p < 0.001). Potential
nitrification was lowest at both Azevedo Pond and
North Marsh on July 16, 2005, and increased slightly
several days later, while rates at South Marsh declined
throughout the 8 d period (Fig. 6). Potential nitrifica-
tion was negatively correlated with PCA component 2
(Fig. 7; r = –0.73, p < 0.02), suggesting that nitrifiers
were less active at low DO and high pore water sulfide.

Sediment oxygen consumption, denitrification and
benthic nutrient fluxes were similar between Azevedo
and South Marsh sites (Table 3). Sediment oxygen con-
sumption was between 28 and 29 mmol m–2 d–1.
NO3

–+NO2
– fluxes were negative, indicating uptake by

sediments, while NH4
+ fluxes were positive. DIP fluxes

in Azevedo were not significantly different from 0,
while fluxes in South Marsh were negative (net uptake
by the sediment). The differences between the 2 sites
were not significantly different for any of the flux mea-
surements (t-test p > 0.20). Diffusive NH4

+ fluxes that
were calculated based on pore water gradients were
similar to fluxes measured in core incubations (data not
shown). Site was a significant term (ANOVA p = 0.01),

with significantly higher diffusive NH4
+

fluxes in North Marsh than in South
Marsh or Azevedo. Denitrification rates
were 2.0 and 5.7 mmol m–2 d–1 in South
Marsh and Azevedo, respectively, but
were not significantly different (t-test
p > 0.20).

Upwelling effects on microbial
processes

Coastal upwelling has a significant
impact on estuaries. Upwelling water
with high NO3

–+NO2
– concentrations

can be the dominant source of nutrients
to Pacific coast estuaries during the
summer dry season when river inputs
are minimal (Colbert & McManus 2003,
Hickey & Banas 2003, Chapin et al.
2004). Upwelling and transport of
organic carbon from offshore can also
fuel respiration within estuaries (Smith
& Hollibaugh 1997). In Elkhorn Slough,
we observed decreasing DO concen-

trations, which we hypothesize to be a community-
level response by the microphytobenthos to lower irra-
diance during a period of summer upwelling. High
chl a concentrations in surface sediments indicate the
presence of an active microphytobenthic community
that is capable of enhancing DO levels in surficial sed-
iments. Thick mats of Ulva lactuca and Enteromorpha
intestinalis are also common on Elkhorn Slough mud-
flats (Zimmerman & Caffrey 2002). However, as PAR
decreases, so do photosynthesis and the thickness of
the oxic zone in sediments (Krause-Jensen et al. 1996,
Porubsky et al. 2009). Declines in PAR during this
upwelling period in Elkhorn Slough led to increased
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hypoxia in the water column, a decline in aerobic sed-
iment processes such as nitrification, and reduced lev-
els of oxidized constituents such as solid phase Fe3+ at
the same time that pore water sulfide concentrations
were increasing. This decline in solid phase Fe3+ con-
centrations could be the result of enhanced iron and
sulfate reduction or decreased iron oxidation in the
surface layer or both. These changes were more appar-
ent at the South Marsh site, which is closer to the coast
than more inland sites like Azevedo Pond.

Solid phase Fe3+ may reduce the inhibitory effects of
sulfide on nitrification by binding sulfide and keeping
it from building up in pore water (Dollhopf et al. 2005).
Dollhopf et al. (2005) found that an Fe3+ inventory of
~2000 mmol m–2, which is ~3 × higher than the highest
Fe3+ inventory in Elkhorn Slough, protected nitrifiers
from inhibition by sulfide. Despite relatively low Fe3+

concentrations and the appearance of sulfide in surfi-
cial sediments, nitrification was not completely inhib-
ited in Elkhorn Slough. While the potential nitrification
rates we measured were lower than rates in sediments
that do not become hypoxic or anoxic (Caffrey et al.
2003), the Elkhorn Slough nitrifying community ap-
pears to be capable of adjusting to changing environ-
mental conditions, specifically of tolerating low levels
of sulfide. Laboratory experiments have shown that the
activity of nitrifiers in sediments is inhibited at sulfide
concentrations between 0.1 (Joye & Hollibaugh 1995)
and 1 mmol l–1 (Dollhopf et al. 2005) when Fe3+ concen-
trations are low.

One possibility is that different members of the nitri-
fying community may be responsible for nitrification
under different sets of environmental conditions. The
AOA sequences that were isolated in this study were
similar to other observations in Elkhorn Slough
reported by Francis et al. (2005). In contrast to previous
studies in Elkhorn Slough, the AOB sequences that
were recovered during this study were more distantly
related to the previously found Nitrosomonas or
Nitrosospira sequences (Caffrey et al. 2003), but were
similar to sequences found in other coastal environ-
ments. The South Marsh clones were most similar to

Nitrosospira, while North Marsh clones were most
similar to Nitrosomonas sp. Nm 143.

While we do not know which of these groups was
responsible for nitrification at the different sites, quan-
titative PCR from these sites showed that AOA amoA
genes were 13 × more abundant than AOB amoA
genes at North Marsh (Caffrey et al. 2007a), which is
the site with the highest potential nitrification rates.
The abundance of the 2 groups was comparable at
South Marsh (1.2 AOB:1 AOA), while AOB amoA were
5 × more abundant than AOA amoA at Azevedo Pond
(Caffrey et al. 2007a), which had the lowest potential
nitrification rates of the 3 sites. This suggests that dif-
ferent groups might have been responsible for nitrifi-
cation as environmental conditions changed during
this upwelling event. High abundances of AOB have
been associated with high nitrification rates in several
estuaries (Cebron et al. 2003, Bernhard et al. 2007),
while nitrification rates are correlated with AOA amoA
abundance in oceanic water columns (Wuchter et al.
2006, Lam et al. 2007) and in some estuarine sediments
(Caffrey et al. 2007a). While high abundances of AOA
amoA have been measured at low DO levels (Coolen et
al. 2007, Lam et al. 2007), the question remains open
whether AOA can nitrify at DO concentrations as low
as those at which AOB can (Sliekers et al. 2005).

Benthic fluxes that were measured in this study are
in the range of previous measurements at similar
Elkhorn Slough sites (Table 3; Caffrey 2002, Caffrey et
al. 2002) and similar to fluxes measured in other estu-
arine systems (Cowan et al. 1996, Feuillet-Girard et al.
1997, Dalsgaard 2003). Benthic fluxes in shallow photic
estuaries like Elkhorn Slough are controlled by redox
and light conditions. NO3

–+NO2
– fluxes were into sedi-

ments at both of our study sites, indicating that
NO3

–+NO2
– production by nitrification was low relative

to NO3
– removal by processes such as denitrification

(Table 3). The direction of NO3
– fluxes changes from

out of sediments during aerobic conditions to into sed-
iments during hypoxia (Cowan et al. 1996), presum-
ably due to reduced nitrification, although increased
demand for an alternative terminal electron acceptor
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Site Month SOC Denitrification NO3
–+NO2

– NH4
+ DIP Source

Azevedo Pond 7/2005 28.1 ± 5.36 5.74 ± 2.52 –1.63 ± 0.31 2.10 ± 1.58 0.39 ± 0.60 This study
South Marsh 7/2005 29.1 ± 6.63 1.96 ± 0.63 –1.22 ± 0.46 2.52 ± 1.52 –0.25 ± 0.11 This study
Azevedo Pond 9/1994 73 ± 15 nd –1.1 ± 0.3 4.8 ± 1.1 –1.0 ± 0.3 Caffrey (2002)
Five Fingers 9/1994 24 ± 4 nd 1.1 ± 0.1 1.0 ± 0.5 –0.8 ± 0.3 Caffrey (2002)
Whistle Stop 9/1994 51 ± 6 nd 0.5 ± 0.2 2.1 ± 0.3 0.1 ± 0.3 Caffrey (2002)
Hudson’s Landing 7/1999 49.5 ± 29.6 nd 4.30 ± 16.01 0.1 ± 4.1 –5.55 ± 2.75 Caffrey et al. (2002)
Vierra Mudflat 7/1999 7.3 nd –0.55 ± 1.0 1.4 ± 1.3 –0.11 ± 0.1 Caffrey et al. (2002)

Table 3. Sediment oxygen consumption (SOC), denitrification and benthic fluxes of NO3
–+NO2

–, NH4
+ and DIP (means ± SE) in

mmol m–2 d–1 at Azevedo Pond and South Marsh from this study and previous dry season measurements in Elkhorn Slough. 
Negative values are fluxes into the sediments. nd: not determined
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to support benthic respiration may also be a factor
under hypoxic conditions. Inhibition of nitrification
may also reduce denitrification rates (Kemp et al. 1990)
and anammox in systems with low concentrations of
NO3

– in the overlying water. Similarly, hypoxic condi-
tions can lead to the release of DIP from sediments as P
bound to Fe oxides is released when Fe3+ is reduced
(Koop et al. 1990, Hietanen & Lukkari 2007). NH4

+

fluxes that were measured in intact cores and those
calculated from extractable NH4

+ concentrations were
similar and showed little change over time. Given that
NH4

+ can be released during aerobic decomposition,
fermentation or sulfate reduction (Canfield et al. 2005),
NH4

+ fluxes may be less sensitive to changing redox
conditions than other fluxes.

This study shows how changing light conditions dur-
ing an upwelling event affect microbial processes and
sediment biogeochemistry in Elkhorn Slough. In shal-
low photic estuaries, the activity of microphytoben-
thos, specifically the oxidation of surface sediments,
has a major impact on microbial processes and poten-
tially on the microbial community. Small reductions in
irradiance, whether from fog caused by upwelling, or
from increases in turbidity due to sediment resuspen-
sion, lead to lower water column DO concentrations
and reduced sediment redox potential, ultimately
inhibiting aerobic microbial processes such as nitrifica-
tion. As a result, eutrophic shallow estuaries like
Elkhorn Slough are delicately poised such that their
sediment biogeochemistry responds quickly to rela-
tively small changes in the light environment.
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