Elevations for Sea Level Modeling

Eric Van Dyke (vandyke@elkhornslough.org)

Digital terrain model ("bare earth")

Sorted marsh elevations (surveyed) Rubis Creek Big Creek Azevedo -MHW -MHHW 1.75 1.70 1.65 1.60 Elevation (m) 1.55 1.50 1.45 Vertical range is <40 cm 1.40 Vertical range varies by location 1.35 Vertical accuracy of LiDAR is 5-30 cm (RMSE) 1.30

Station: 9413651 Name: Kirby Park, Elkhorn Slough, CA Status: Accepted (Mar 25 2009)

tidesandcurrents.noaa.gov

Epoch: 1983-2001 Datum: STND

Datum	Value	Description			
MHHW	4.252	Mean Higher-High Water			
MHW	4.034				
MSL	3.473	Mean Sea Level			
MTL	3.468	Mean Tide Level			
DTL	3.412	Mean Diurnal Tide Level			
MLW	2.902	Mean Low Water			
MLLW	2.572	Mean Lower-Low Water			
NAVD88	2.531	North American Vertical Datum of 1988			
STND	0.000	Station Datum			
GT	1.680	Great Diurnal Range			
MN	1.131	Mean Range of Tide			
DHQ	0.219	Mean Diurnal High Water Inequality			
DLQ	0.330	Mean Diurnal Low Water Inequality			
HWI	6.86	Greenwich High Water Interval (in Hours)			
LWI	12.35	Greenwich Low Water Interval (in Hours)			
HAT	4.781	Highest Astronomical Tide			
HAT Date	19861231	Highest Astronomical Tide Date			
HAT Time	10:00	Highest Astronomical Tide Time			
LAT	2.027	Lowest Astronomical Tide			
LAT Date	19861231	Lowest Astronomical Tide Date			
LAT Time	17:24	Lowest Astronomical Tide Time			

Vertical Datum Transformation

vdatum.noaa.gov

Integrating America's Elevation Data

Home	About	Download	Education	Development	Contact Us
		Welc	come to VDatu	m!	
 What's New? VDatum Featu Est. of Vertica Download VD Online User C Troubleshooting 	al Uncertainties Datum now Guide	the easy VDatum (NGS), and Se variety data fro	stern half of Louisia n is a free software to Office of Coast Surv rvices (CO-OPS). VE of tidal, orthometric a om different horizonta	ol being developed jointley (OCS), and Center for atum is designed to vertind	y by NOAA's National Geodetic Survey Operational Oceanographic Products cally transform geospatial data among a tums - allowing users to convert their a common system and enabling the
			Horizontal datums: ellisoidal datums suc	from NAD 27 or NAD 83 h as WGS 84 and ITRF	ed, VDatum converts the following: (1986) to NAD 83(HARN) and other
The VDatum Demonstration Project in Tampa Bay, Florida NOAA USGS Bathymetry Topography	 Vertical datums: among three vertical groups: tidal datums, orthometric datums and ellipsoidal datums (i.e. three-dimension or 3-D datums), in which: Tidal datums are available along the coastlines from Rhode Islands to Texas and from Washington to California. (Why doesn't VDatum provide tidal conversions inland?) Transforms among ellipsoidal and orthometric datums are available throughout the United States; 				
133			orthometric d	atum are calculated base	psoidal datum and the NAVD 88 on the current GEOID model of 2009.

Convert LiDAR DTM to connected water surface

NOAA CO-OPS website (tidal datums and benchmarks) http://tidesandcurrents.noaa.gov

NOAA Digital Coast website (coastal inundation modeling) http://www.csc.noaa.gov/digitalcoast

Coastal Inundation Mapping Guidebook (2009) http://www.csc.noaa.gov/digitalcoast/inundation/_pdf/guidebook.pdf

Detailed inundation methods document (for ArcGIS + Spatial Analyst) http://www.csc.noaa.gov/slr/viewer/assets/pdfs/Inundation_Methods.pdf

NOAA VDatum website (vertical datum transformations) http://vdatum.noaa.gov

GU3199 ***********************************							
GU3199 TIDAL BM - This is a Tidal Bench Mark. WWW.NgS.Noaa.gov							
GU3199 DESIGNATION - 941 3651 B TIDAL							
GU3199 PID - GU3199							
GU3199 STATE/COUNTY- CA/MONTEREY							
GU3199 USGS QUAD – PRUNEDALE (1993)							
GU3199							
GU3199 *CURRENT SURVEY CONTROL							
GU3199							
GU3199* NAD 83(1986) - 36 50 32. (N) 121 44 48. (W) SCALED							
GU3199* NAVD 88 - 2.121 (meters) 6.96 (feet) READJUSTED							
GU3199 GU3199 GEOID HEIGHT33.59 (meters) GEOID09							
GU3199 DYNAMIC HT - 2.120 (meters) 6.96 (feet) COMP							
GU3199 MODELED GRAV- 979,874.7 (mgal) 0.90 (leet) COM							
GU3199							
GU3199 VERT ORDER - ?							
GU3199							
GU3199.The horizontal coordinates were scaled from a topographic map and have							
GU3199.an estimated accuracy of $+/-$ 6 seconds.							
GU3199							
GU3199.The orthometric height was determined by differential leveling							
GU3199.and adjusted in March 1993.							
GU3199.The height was derived from older observations constrained to new							
GU3199.heights in a crustal motion area. The height is approximate in							
GU3199.relation to other heights in its vicinity.							
GU3199							
GU3199.This Tidal Bench Mark is designated as VM 11895							
GU3199.by the CENTER FOR OPERATIONAL OCEANOGRAPHIC PRODUCTS AND SERVICES.							
GU3199							
GU3199.The geoid height was determined by GEOID09.							

www.ngs.noaa.gov/GEOID The NGS Geoid Page

National Geodetic Survey

NGS Home

About NGS Data & Imagery Surveys

Tools

Science & Education

Search

Geoid Quick Links NGS Geoid Home Page NGS Geoid models

Publications

NGS Geoid Research Page

Geophysics of the Geoid

Geoid Slope Validation Survey of 2011

Have a geoid question? Contact the Geoid Team

The National Geodetic Survey has released updated models for transforming heights between ellipsoidal coordinates and physical height systems that relate to water flow. These models cover regions including the conterminous United States (CONUS), Alaska, Hawaii, Guam and the Commonwealth of the Northern Mariana Islands, and American Samoa, Models for Puerto Rico and the U.S. Virgin Islands are being held back pending release of final control data for the USVI but will likely be released later this Fall. GEOID09 transforms to NAVD 88 in CONUS and Alaska and to the respective datums for all the other regions (each having its own datum point). Models for the Deflection of the Vertical have also been released for these same regions mainly for aid in navigation systems.

Latest models

Hybrid Geoids

Converts heights from NAD 83 to regional Vertical datums (e.g., NAVD 88)

- GEOID09
 - UPDATED model g200307 bin (southern Louisiana) GEOID03
- GEOID06
- GEOID99
- GEOID96

Gravimetric Geoids

Converts heights from ITRExx to the NGS geoid surface (not NAVD 88 or other Vertical datums)

Update LiDAR DTM geoid model

NOAA NGS website (benchmark datasheets)

http://www.ngs.noaa.gov

NOAA NGS geoid website (geoid models) http://www.ngs.noaa.gov/GEOID

Sea level rise and geospatial data

Technical Considerations for Use of Geospatial Data in Sea Level Change Mapping and Assessment (2010) http://tidesandcurrents.noaa.gov/publications/tech_rpt_57.pdf

Lidar Data Collected in Marshes: Its Error and Application for Sea Level Rise Modeling (2010) http://www.csc.noaa.gov/digitalcoast/data/coastallidar/_pdf/ Lidar_marshes_slamm_CSC.pdf

Summary

- Use LiDAR elevations
 Vertical accuracy of IfSAR and most NED is >1m (RMSE)
- Update to GEOID09 (if necessary)
- Convert DSM to DTM (challenging in marsh!)
 Compensate for uplift/subsidence?
 Compensate for marsh vegetation bias?
- Enforce tidal connectivity (bridges, culverts)
- Convert DTM to water surface (VDatum)

National Estuarine Research Reserve System

RYUP O I III

