

Greenhouse Effect Sea Level Rise and Coastal Wetlands

The SLAMM Model

Description. Because no previous researchers had developed a satisfactory model, it was necessary for us to develop a simulation model suitable for analyzing the impact of sea level rise on coastal wetlands. The model, called SLAMM (Sea Level Affecting Marshes Model), simulates the long-term change in coastal areas due to rising sea level. The model employs a reasonably straightforward but complex set of decision rules to predict the transfer of map cells from one category to another (Figure 4-8). These rules embody assumptions of linear, average responses. They may not apply in detail for any particular area; however, they are suitable for policy development on a regional basis, providing an estimate of the magnitude of the problems and suggesting the nature of the regional policies needed to mitigate those problems.

Figure 4-8 summarizes the model. The average elevation for a cell is determined by subtract-

Sea Level Affecting Marshes Model http://warrenpinnacle.com

- SLAMM (1985, Dr. Richard A. Park)
- v. 2 (1991)
- v. 3 (1993)
- v. 4 (1998) GIS maps & GUI
- v. 5 (2007) salinity model
- v. 6 (2009) flexible elevation ranges
- v. 6.1 beta (2010) open source

Principal users

- EPA
- National Wildlife Federation
- · U.S. Fish & Wildlife Service
- The Nature Conservancy
- Ducks Unlimited
- ... more

Data requirements

- Wetland habitats with elevation ranges
- Precise elevations ("bare earth" DTM)
- Tidal range
- Accretion rates (marsh, tidal flat)
- Erosion rates (marsh, tidal flat)
- Regional subsidence or uplift
- SLR predictions (IPCC)
- optional: levees, % impervious, subsites

Habitat / Elevation registration errors

Habitat elevation ranges

Category	Transition	Minimum	5%	Mean	95%	Max	Stdev
Upland	0.82	0.10	4.25	9.05	9.52	21.16	1.74
Salt Marsh	0.40	-1.15	0.01	0.54	0.94	1.20	0.29
Tidal Flat	-0.20	-1.13	-0.07	0.23	0.51	1.18	0.19

Depth and vegetation feedback (dynamic accretion)

Sensitivity to accretion rate

Sensitivity to subsidence rate

Sea level rise predictions (IPCC A1B and greater)

Dynamic accretion rate

Model limitations

- Habitat elevation boundaries are rigid
- Accretion rates are constant (fixed!)
 Added dynamic accretion
- Subsidence rates are constant
 Below ground processes should be modeled
- Episodic events (storms, floods) are not accounted for
- Accuracy assessment of model predictions is difficult

