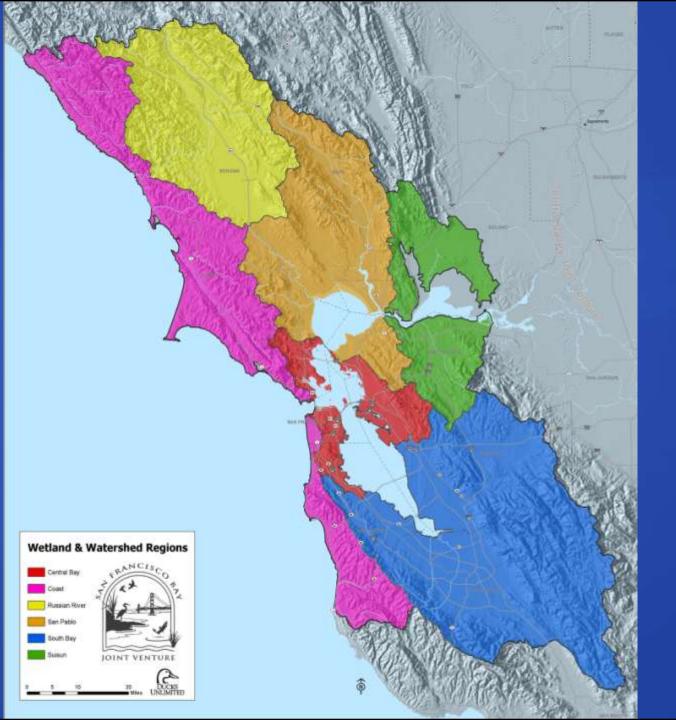
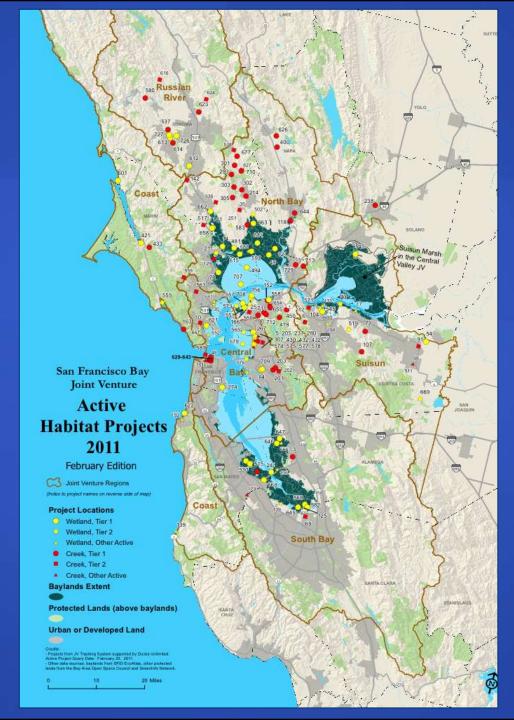


& Information Gaps regarding Sea Level Rise (SLR) Impacts on Estuaries





Focal Region of the San Francisco Bay Joint Venture

- North Bay
- Central Bay
- South Bay
- Suisun/Delta
- Coastal watersheds
- Russian River

JV SLR Concerns

PAST – Fate of restoration investment

- PRESENT Vulnerability assessments & adaptation strategies for target ecosystems & species
- FUTURE Climate-smart restoration & management

Tidal Marsh Vulnerability to SLR Manager Needs

- Understand localized SLR rates (i.e. SF Bay regions vs. Tomales Bay)
 - need accurate models depicting water levels over time under various conditions;
- Know tidal marsh vulnerability to SLR given current topography and current sediment loading rates in respective watersheds
 - i.e. Storm events at high-tides, influence of levee structures, etc.
- Determine vulnerability of future marsh in subsided baylands
 - Can we expect the marsh to form in our anticipated 20-year timeframe and will it keep pace with sea level rise?

Tidal Marsh Vulnerability to SLR Manager Needs

- Understand potential for marshes to migrate inland in response to SLR
 - taking into consideration topographic and infrastructure constraints
- Understanding of what factors will be most important in the ability of coastal marshes to mitigate sea level rise
 - i.e. Will organic matter accumulation be more important than sedimentation in allowing marshes to respond to increases in sea level?
- Understanding the fate of the habitat itself, and also the fate of all the plant and wildlife species utilizing it
- Need to have information on local trends on climate, hydrology, and geology
 - to be able to make informed management decisions

Impacts of Most Concern

- Conversion of habitats (tidal marsh to mudflat or subtidal) and related loss of restoration investment
- Primarily losing mid and upper marsh zones to lower marsh and open Bay water habitat.
- Changes in salinity regime & related impacts on fauna & flora
- Associated storm events as they are least predictable and can occur far more quickly than actual sea level rise

Urgency for Vulnerability Assessments

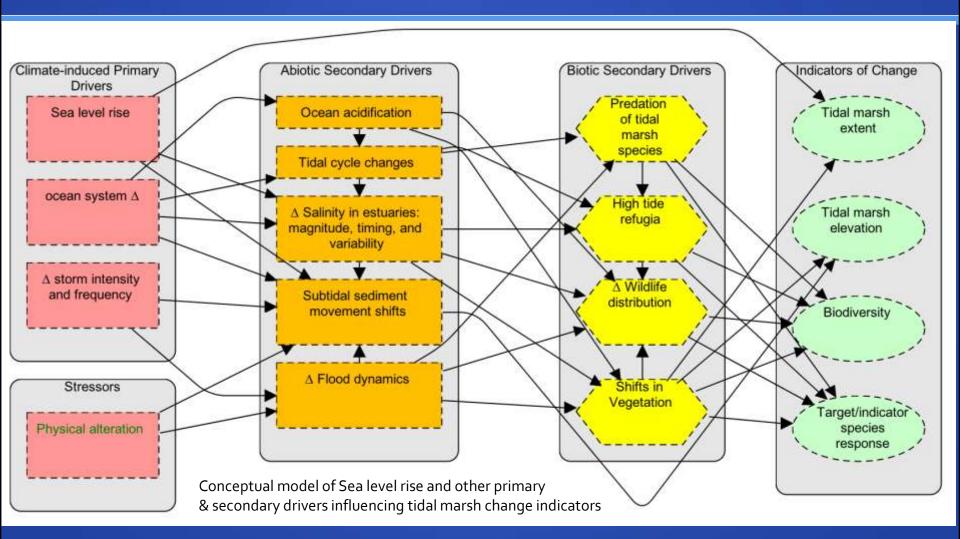
- Need to complete vulnerability assessments as soon as possible
 - BUT important to have the best information available to inform these efforts !
- Urgency for having information on localized trends in climate, hydrology, and geology
- The sooner the better! We are moving forward now.
- Yesterday has passed already, so, sometime in the near future!

SLR Vulnerability Analysis Main Concerns

- Information will be used to make decisions that are not truly reflective of changes that might occur in our region
- Mainly that the science is not advanced enough to accurately predict what will happen. We don't really know:
 - how much sediment is out there
 - when and how fast sea level will rise
 - "The benefit of unrefined maps is outweighed by the alarm they raise."
- Whether we'll have enough quantity and quality of refugia habitat to provide for the species entrusted by the public to our agency
- Results will tell us that there isn't much we can actively do and our previous work is lost

Main Information Gaps

- Site specific height and rate of sea level rise and sediment availability
- No good current modeling for potential changes along the California coast
- Perceived gaps in the exchange of information among those organizations (scientists!) collecting, analyzing, and conveying the info


Priority Research Needs

- SLR impacts on habitat evolution- can passive marsh accretion keep up with SLR?
- Vulnerability assessments for tidal marsh ecosystems and key indicator species
 - Site specific rate of SLR & sediment availability
- High tide refugia distribution & associated predation risk
- Projected storm severity & frequency in conjunction with SLR impacts on key species
- Effects of changing salinity & ocean estuary linkages

Priority Monitoring Needs

- SLR in conjunction with salinity Δ, storm frequency
- Tidal water & extreme event surface elevations & rates of Δ at local scale
- Impacts on marsh fauna, flora, special status species
 Indicators developed via SFEP-DWR effort

Conceptual Model

Overarching Conservation Goal(s)

Figure 1: Framework for developing Climate Change Adaptation Strategies (Source: Glick et al. 2011a).

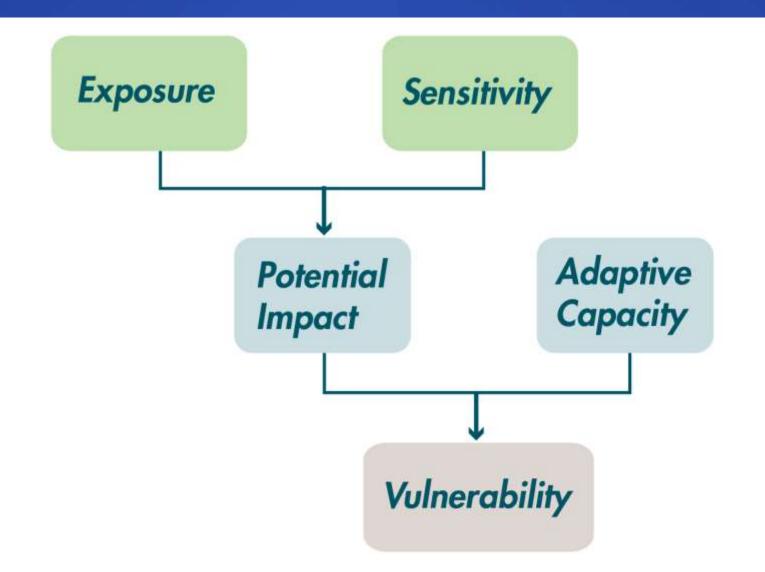


Figure 3: Key components of vulnerability, illustrating the relationship among exposure, sensitivity, and adaptive capacity (*from: Glick et al. 2011a*)

1. Identify Restoration Goals and Targets	SpeciesHabitatEcosystem	←
2. Identify Restoration Project Approaches	 Improve terrestrial/Aquatic connectivity Reduce existing stressors Protect key ecosystem features Maintain/improve diversity Restore/emulate natural functions 	+
3. Assess Vulnerability of Targets/Project Approaches to Climate Change	 Determine objectives and scope Assess the components of vulnerability (sensitivity, exposure, and adaptive capacity) Summarize vulnerability 	*
4. Identify Climate-Smart Management Options	 Strategies to reduce sensitivity Strategies to reduce exposure Strategies to enhance adaptive capacity 	*
5. Select and Implement Management Options	 Prioritize options by importance/urgency Prioritize options by likely benefits/performance Prioritize options by costs/feasibility 	+
6. Monitor, Review, Revise	 Incorporate new science Evaluate effectiveness of management efforts Revisit one or more of the previous steps 	

Figure 2: Framework for developing climate-smart restoration programs (*source: Glick et al.* 2011b)