

An accurate digital terrain model (DTM) and an accurate, connected water surface are essential for modeling sea level rise and marsh sustainability.

Reconciling three types of elevation measurements (vertical datums) is necessary to produce a DTM and water surface suitable for sea level and marsh sustainability modeling.

Convert LiDAR DTM to connected water surface

NOAA CO-OPS website (tidal datums and benchmarks)

http://tidesandcurrents.noaa.gov

NOAA Digital Coast website (coastal inundation modeling) http://www.csc.noaa.gov/digitalcoast

Coastal Inundation Mapping Guidebook (2009)

http://www.csc.noaa.gov/digitalcoast/inundation/_pdf/guidebook.pdf

Detailed inundation methods document (for ArcGIS + Spatial Analyst) http://www.csc.noaa.gov/slr/viewer/assets/pdfs/Inundation_Methods.pdf

NOAA VDatum website (vertical datum transformations) http://vdatum.noaa.gov

Interpolated datum transformation across the entire wetland, using NOAA's VDatum program, is preferable. Detailed instructions for applying VDatum to a DTM and for enforcing hydraulic connectivity within the resulting water surface can be downloaded from the NOAA Digital Coast website.

Update LiDAR DTM geoid model

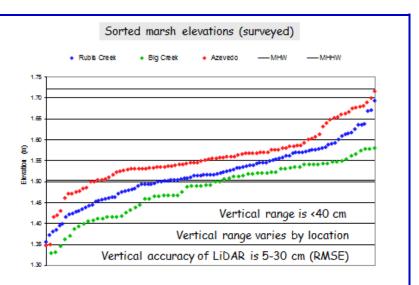
NOAA NGS website (benchmark datasheets)

http://www.ngs.noaa.gov

NOAA NGS geoid website (geoid models)

http://www.ngs.noaa.gov/GEOID

Sea level rise and geospatial data


Technical Considerations for Use of Geospatial Data in Sea Level Change Mapping and Assessment (2010)

http://tidesandcurrents.noaa.gov/publications/tech_rpt_57.pdf

Lidar Data Collected in Marshes: Its Error and Application for Sea Level Rise Modeling (2010)

http://www.csc.noaa.gov/digitalcoast/data/coastallidar/_pdf/ Lidar_marshes_slamm_CSC.pdf

GEOID09 and earlier geoid models are available from the NOAA NGS website. Two overview documents, covering the essentials of preparing geospatial data (especially LiDAR) for sea level modeling and mapping, can also be downloaded from NOAA websites.

LiDAR elevation data, adjusted to account for tidal variability, barely provides the required vertical accuracy.

Station:			tidesandcurrents.noaa.gov
Name:	Kirby Parl	t, Elkhorn	Slough, Ch Haesandean ems.moda.gov
Status:	Accepted (Mar 25 2009)		9)
	Datum	Value	Description
	MHHW		Mean Higher-High Water
	MHW		Mean High Water
	MSL	3.473	Mean Sea Level
	MTL	3.468	Mean Tide Level
	DTL	3.412	Mean Diurnal Tide Level
	MLW	2.902	Mean Low Water
	MLLW	2.572	Mean Lower-Low Water
	NAVD88	2.531	North American Vertical Datum of 1988
	STND	0.000	Station Datum
	GT	1.680	Great Diurnal Range
	MN	1.131	Mean Range of Tide
	DHQ	0.219	Mean Diurnal High Water Inequality
	DLQ	0.330	Mean Diurnal Low Water Inequality
	HWI	6.86	Greenwich High Water Interval (in Hours)
	LWI	12.35	Greenwich Low Water Interval (in Hours)
	HAT	4.781	Highest Astronomical Tide
	HAT Date	19861231	Highest Astronomical Tide Date
	HAT Time	10:00	Highest Astronomical Tide Time
			Lowest Astronomical Tide
	LAT Date	19861231	Lowest Astronomical Tide Date
	LAT Time	17:24	Lowest Astronomical Tide Time

The relationship between tidal and orthometric datums at many (but not all) tidal benchmarks can be determined from NOAA CO-OPS datasheets.

```
www.ngs.noaa.gov
GU3199 TIDAL BM
                      - This is a Tidal Bench Mark.
         DESIGNATION - 941 3651 B TIDAL
                          GU 3199
        STATE/COUNTY- CA/MONTEREY
USGS QUAD - PRUNEDALE (1993)
GU3199
GU3199
                                   *CURRENT SURVEY CONTROL
GU3199
GU3199 + NAD 83(1986) - 36 50 32.
GU3199 + NAVD 88 - 2.
                                                                             SCALED
GU3199
                                                                             GEOID09
GU3199
                                    2.120 (meters)
                                                                             COMP
        MODELED GRAV-
GU3199 VERT ORDER
GU3199. The horisontal coordinates were scaled from a topographic map and have
GU3199.an estimated accuracy of +/- 6 seconds.
GU3199. The orthometric height was determined by differential leveling
GU3199.and adjusted in March 1993.
GU3199.The height was derived from older observations constrained to new
GU3199.heights in a crustal motion area. The height is approximate in
GU3199.relation to other heights in its vicinity.
GU3199. This Tidal Bench Mark is designated as VM 11895
GU3199.by the CENTER FOR OPERATIONAL OCEANOGRAPHIC PRODUCTS AND SERVICES.
GU3199. The geoid height was determined by GEOID09.
```

Because they are positioned with GPS, LiDAR elevations are referenced to the ellipsoid. LiDAR vendors convert to orthometric heights (NAVD88) with an interpolated geoid model. If the latest model (GEOID09) wasn't used, it is important to update heights with GEOID09 for improved accuracy.

Summary

- Use LiDAR elevations
 - Vertical accuracy of IfSAR and most NED is >1m (RMSE)
- Update to GEOID09 (if necessary)
- Convert DSM to DTM (challenging in marsh!) Compensate for uplift/subsidence? Compensate for marsh vegetation bias?
- Enforce tidal connectivity (bridges, culverts)
- Convert DTM to water surface (VDatum)

The sequence of tasks needed to prepare elevation data for use in sea level and marsh sustainability modeling is complex but essential to achieve accurate results.