

Drift Fence Components

- Fence
 - non climbable material
 - aluminum flashing
 - · silt fencing
 - · shade cloth
 - · wood paneling, fiberboard, screen
 - supporting elements
 - · wooden stakes
 - · rebar, other?
 - minimal requirements
 - · 12 inches tall
 - · 3 inches buried

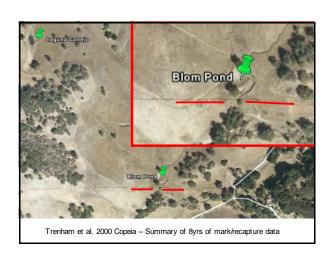
- · Pitfall Traps
 - plastic buckets
 - at least 2 gallons in size for protocol
 - bucket lids
 - · permit info on traps
 - sunshade
 - other
 - · foam/pvc tubes for moisture and shelter
 - escape ropes

Drift Fence Construction

- · Fencing requirements
 - fencing equal to ≥90% of site perimeter
 - -≥ 50% of shoreline for potential breeding ponds
- Site selection for fencing
 - maximize capture potential
 - target areas near ponds
 - at least 10 ft from high water mark
 - av oid major mammal activity
- Site selection for pitfall traps
 - ≤10 meter (33 ft) between traps
 - av oid "wet" areas, ant hills
 - select higher spots

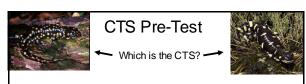
Protocol Sampling for CTS

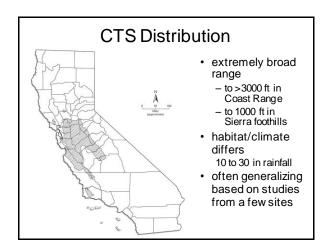
- 1) Site assessment assess upland and aquatic habitat onsite and in surrounding areas
- 2) If upland habitat only...
 - Two seasons of upland drift fence sampling
 - Traps opened for rain events Oct. 15 Mar.


 - actual or predicted >70% chance
 if it rains = traps open the next night too
 - after 20 nights, just sample during rain events
 - if CTS discovered, STOP and contact agencies
- 3) If potential breeding habitat present
 - One season upland sampling as above
 Drift fences sampling potential breeding habitat

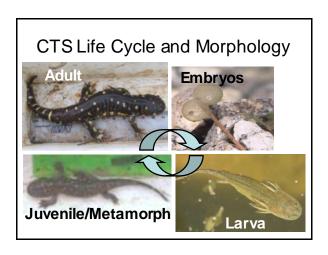
 - 2 seasons aquatic sampling for CTS larvae

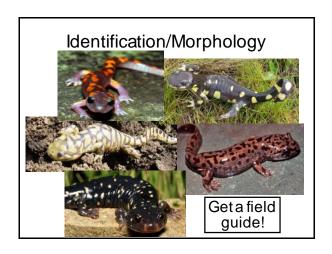
FWS Reports

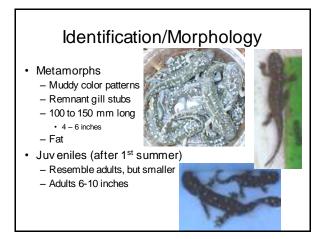

- · Provide Complete Information
 - Dates and times sampled
 - Rainfall/temperature data for area during study period
 - Records of all animals captured
 - Photographs of representative specimens
 - Photographs of sampling apparatus
 - Records of all communications with FWS
 - For aquatic sampling calculations of the total effort expended/area covered each time

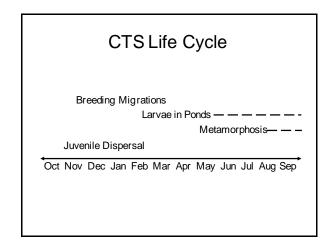

Upland Workshop Topics

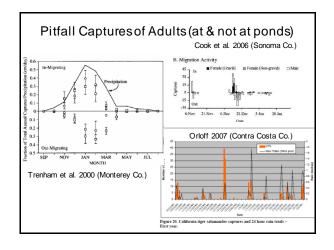
- · Survey methodology and regulations
- Review of CTS habitat, life cycle & identification
- · Annual events, population biology
- · Upland biology as we know it
- Studies and observations of movement and habitat use
- · Threats
 - strategies for avoidance and minimization
 - strategies for land management

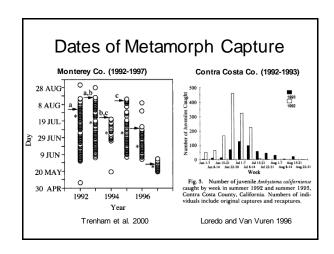


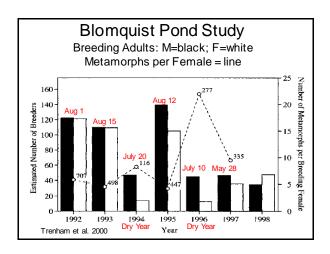

- · good features for a CTS breeding pond include?
- adult CTS spend ??% of the year in the water?
- · where do they liv e on land?
- · most CTS stay within 50 m of water?
- · what time of year are breeding migrations?
- · what is the best season for larv al sampling?











Pond Size Influences Productivity

- · Blom Pond, Monterey County
 - -116 to 707 metamorphs (average = 400)
- Loredo Study Pond, Contra Costa County
 - 1248, 481, and 3 metamorphs (average = 571)
- · Jepson Prairie, Solano County
 - Olcott Lake ~2400 ~3200 captured in 400 m fence
 - Round Pond ~200 ~2700 captured in 100 m fence
- All other factors equal larger pools support larger populations! – but hydroperiod is key!

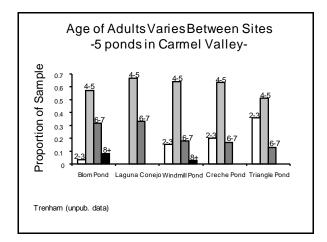
Life Cycle and Morphology - Main Points

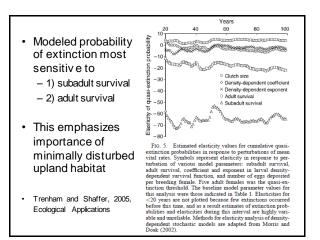
- Adults migrate to ponds during fall and winter rains
 - Present at ponds relatively briefly
- · Embryos potentially detectable Nov-March
 - Eggs attached singly or in small groups
- · Larv ae mainly detectable March-August
 - Too small to catch before March
 - Coloration extremely variable, but no stripes
- Metamorphosis begins in May
 - Metamorphs vary wildly in color and size
 - Some present in many ponds through summer

Demography - Key Life History Parameters

Table 4. Percentages of Known Survivors in Each Year Following Marking, for Cohorts of Breeding Adult Ambistoma californiess Initially Captured in the Same Year.

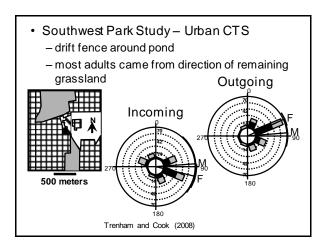
Year first marked		Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
1992	Males	55.5	31.9	22.7	11.8	5.0	3.4
	Females	42.1	15.7	15.7	7.4	7.4	2.5
1993	Males	33.3	25.5	9.8	5.9	3.9	
	Females	13.6	12.1	6.1	3.0	1.5	
1994	Males	38.1	19.0	4.8	0.0		
	Females	33.3	16.7	16.7	16.7		
1995	Males	32.0	26.0	12.0			
	Females	14.5	14.5	10.8			
1996	Males	19.0	4.8				
	Females	11.0	11.0				
1997	Males	6.9					
	Females	0.0					

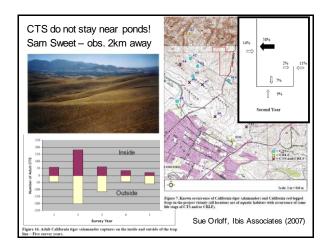

Annual probability of dying for adults = 25 - 40%


Higher first year after marking

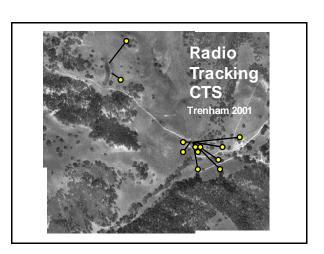
Estimates above low due to 1) dispersal & 2) skipping breeding

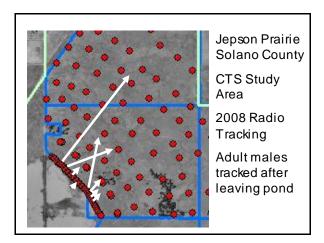
Lifetime Breeding Events = 1.5 per female


Juvenile mortality rates are poorly understood - likely high

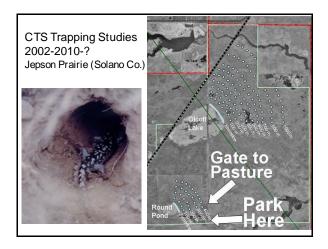


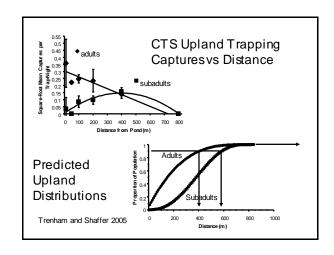
Demography - Main Points

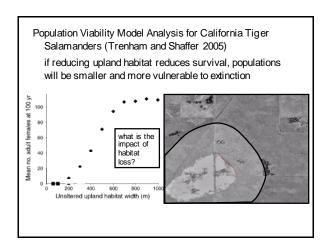

- Capable of producing large numbers of offspring
 - Given the right conditions
- Some individuals can live 10+ years
 - Most don't ever make it to metamorphosis
- Population size is much more sensitive to upland survival than to larval survival

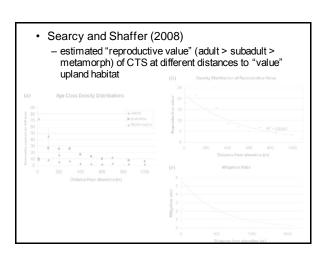


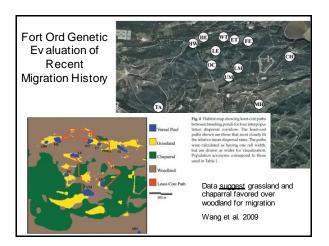



FIBER-OPTIC VIDEO Courtesy of Michael Van Hattem



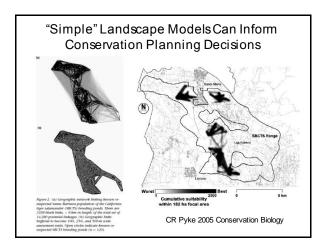

California Tiger Salamander Upland Habitat Workshop June 21-23, 2010





California Tiger Salamander Upland Habitat Workshop June 21-23, 2010

Upland Habitat Basics


- Major upland habitats
 - grassland
 - oak woodland (?)
 - chaparral/sage scrub
- Occupy mainly ground squirrel and gopher burrows
 - After metamorphosis, CTS are almost always underground
 - Emerge only at night, usually when raining
- Most do not remain near edge of pond
 - ->1km is not rare
- Dispersal between ponds 1-2km estimated
 - 680m observed ~800m genetically estimated

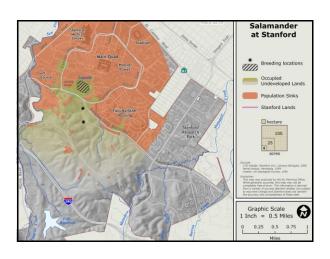
How many acres/hectares do CTS need?

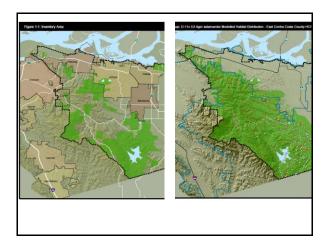
 About how many hectares/acres are encompassed by a pond buffered by 1km?

$$AREA = \Pi r^2$$

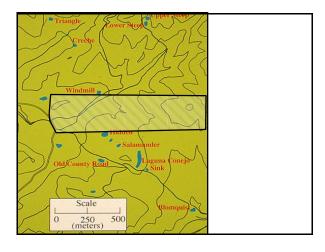
- $r = 1.000 \, \text{m}$
- hectare = 10,000 m²
- acre = 2.5 hectares

Managing Habitat for CTS


- Uplands
 - Maintain habitat connectivity
 - Maintain natural habitat near breeding ponds
 - Maintain burrowing mammal populations
 - May be able to enhance mammal habitat (e.g., creating mounds)
 - Effects of grazing unknown, but likely positive


Conservation Strategies

- Protect occupied landscapes
 - Ideally >> 1000 acre blocks; minimally 100 acres
- · Maintain/promote habitat connectivity
 - Minimize effects of new or improved roads
 - Potential barriers: aqueducts and canals, agricultural fields, landfills, other ideas?
- · Other approaches
 - Creating/enhancing habitats
 - Compensation through conservation banks
 - Barriers or tunnels to keep them off roads


California Tiger Salamander Upland Habitat Workshop June 21-23, 2010

