
CCRC 2009 Monitoring Results

Analysis—Ordination
Detrended Correspondence Analysis (DCA)

James W. Bartolome
Professor of Rangeland Ecology and
Management
University of California Berkeley
October 15, 2009

- As a first step in the analysis, we found that 40% of the variation was explained.
- This is good for grasslands and allows for some interpretation and analysis of the patterns (Figures 1 and 2).

First, I want you to understand how DCA works, so I'll show two graphs to illustrate what it can do.

- Figure 1—213 non-riparian plots/transects.
- DCA locates plots (transects) along 3 axes to reveal groupings for similarity. *Only 2 axes shown here.
- Closer groupings indicate more similarity—plots with similar species makeup.

- Figure 2—210 plant taxa (species, groupings of species in common genera, or unknowns) in the non-riparian plots/transects.
- DCA locates plant taxa along 3 axes to reveal groupings for similarity. *Only 2 axes shown here.
- Closer groupings indicate more similarity—plant taxa found in places with similar environmental variables (year, locations, aspect, grazing, and "fundamental" variables)

Summary of Analysis--

- Groupings of (and distances between) plots in Figure 1 suggests similarity of plant species makeup there.
- Groupings of (and distances between) plant species in Figure 2 suggests similarity of the environmental variables where found.
- As a first step in the analysis, we found that 40% of the variation was explained, so we created other graphs to answer questions.
- As noted earlier, 40% is good for California grasslands and allows for some interpretation and analysis of the patterns.

Questions Posed to this Analysis (other figures not shown)--

- 1. Are there detectable plant community types and/or ecological sites? *Maybe*.
 - Year (differences found due to fluctuations from year to year) was the most important environmental variable.
 - Year was *more* important than Location (property, geographic position).
 - Distinct Ecological Sites (NRCS) were *not* found (more soils info would be needed to detect).

The other 3 DCA graphs are not discussed because they would require too much time to explain.

- 2. Which plant species are important for determining community structure?
 - 210 plant species found (in line point transects).
 - 2008 to 2009 increases in Brodiaea, filaree, and foxtail fescue;
 - Decreases in soft chess and wild oats
 - Ripgut and annual ryegrass occurrences were associated with location.

- 3. Does grazing (or no grazing) or other management affect community structure or species abundance? *No*.
 - In 2008, occurrence of annual ryegrass and ripgut were found to be correlated to grazed sites;
 - But in 2009, this association was not found.
 - No associations to grazing or no grazing or other management factors were found.

RECOMMENDATIONS

- 1. Continue measuring species composition on point transects (in addition to belts) for at least another year to see if site factors will separate out from annual patterns;
- Use a more sensitive soil measurement to delineate ecological sites and better predict responses to environment and management;
- 3. The sampling effort does not need to be increased to improve precision of estimates, but seems about right for providing input to decision making.