Arthropod diversity in native and exotic woodlands

What is an arthropod?

- Chitinous exoskeleton
- Paired jointed appendages
- Segmented body

Why use arthropods for assessing habitat value?

- Extremely abundant and diverse (75% of all animal species)
- Many taxa are well known
- Easy to sample
- Conspicuous in all trophic levels e.g. herbivores, predators, decomposers.
- Sensitive to environmental disturbance

What part of habitat to sample?

Field methods - Pitfall traps

Captures surface-active, larger terrestrial arthropods (e.g. beetles, spiders, ants, isopods)

Field methods - Sticky traps

Samples aerial insects and those associated with foliage

Field methods - Trap placement

- One pitfall and sticky trap at center and edge of each site
- Traps deployed for one week

Field methods - Winkler (litter) traps

Captures slower-moving, arthropods hidden within litter layer (ants, springtails, mites), some of which are not caught in pitfall traps.

Sorting and identification

Arthropods keyed to level of order

Arthropods recovered in traps

• Arachnida

- Acari (mites)
- Araneae (spiders)
- · Chilopoda (centipedes)
- Diplopoda (millipedes)
- Isopoda (sowbugs, etc.)
- Insecta
 - Collembola (springtails)
 - Coleoptera (beetles)
 - Diptera (flies)
 - Hymenoptera (ants, wasps, etc.)

Arachnids - Spiders and mites

Lycosid spider. Courtesy of Iziko Museums of Cape Town

Oribatid mite. Courtesy of Alan Hadley

Other arthropods- Myriapods and isopods

Centipede (Geophilimorpha) (left) and sowbug (Isopoda). Courtesy of Humboldt State Univ Natural History Museum

Insects - Springtails (Collembola)

Image courtesy of John Van Dyk, Iowa State University Department of Entomology Image courtesy of Alan Hadley

Insects - Flies (Diptera) and beetles (Coleoptera)

Leaf Miner Fly (Diptera). Courtesy of John Haarstad, Insects of Cedar Creek Insect Survey Courtesy of John Haarstad, Insects of Cedar Creek Insect Survey

Insects- Wasps and ants (Hymenoptera)

University of Missouri and Sarah Heyman and Jan Weaver Formicidae (Temnothorax sp.) Courtesy of California Acad. Sciences

Rarefaction curve - Oak and eucalyptus

Still more taxa to be uncovered, slightly more so for oak

Ecosim 7.0 (Gotelli & Entsminger 2002)

Rarefaction curve - Oak and eucalyptus

Eucalyptus crossing below oak lower confidence limit

Ecosim 7.0 (Gotelli & Entsminger 2002)

Results - Pitfall and sticky traps Taxonomic summary

- Three orders account for majority of arthropods in oak and eucalyptus:
 - Collembola (springtails),
 - Acari (mites)
 - Diptera (flies)
- Less abundant orders:
 - Coleoptera (beetles) and Araneae (spiders) are less than 10% of total
 - many orders are rare (1% or less)
- 17 orders associated with oak and/or eucalyptus habitats

Order abundances - Oak and eucalyptus

Order	Oak	Euc
Collembola (springtails)	519	589
Thysanura (bristletails, etc.)	1	1
Orthoptera (crickets, etc.)	0	2
Homoptera (aphids, etc)	6	11
Psocoptera (barklice)	7	11
Diptera (flies)	255	864 **
Lepidoptera (moths, butterflies) 1	0
Thysanoptera (thrips)	4	7
Coleoptera (beetles)	146 ★	48
Hymenoptera (ants, wasps, etc.)	16	13
Polyxenida (bristle millipedes)	0	2
Julida (common millipedes)	1	0
Lithobiomorpha (centipedes)	0	1
Acari (mites)	406	295
Araneae (spiders)	58	32
Pseudoscorpions	1	1
Isopoda (sowbugs, etc.)	7	0
Unknown	19	9

ANOVA, *P < .05; **P < .02)

Order abundances - Oak and eucalyptus

Total abundances (of orders) correlate fairly well in two habitats (i.e. rare in both euc and oak, or abundant in both).

Average abundance of top orders

ANOVA, *P< .05; **P < .02)

Overall habitat comparisons

No significant different between woodland types (ANOVA, P>.05).

Overall habitat comparisons

Abundance greater in eucalyptus groves than in oak woodlands (ANOVA, P>.05).

Overall habitat comparisons

Diversity is greater in oaks- i.e. same number of orders but more evenly spread in oaks than eucs (ANOVA, P>.05). Previous research on native and eucalyptus woodlands

- Sax (2002) surveyed arthropod diversity of native (oak and bay) and eucalyptus woodlands.
 - <u>equal species richness</u> (approximately 40 sp. in each habitat).
 - About <u>half of species were shared</u> by both woodland types.
 - <u>Species composition was different</u> between woodland types.
 - <u>Eucs had higher invertebrate diversity</u> than native woodlands (spring only).

Comparison of two studies

- Taxa richness equal in eucs and native woodlands
 - Order richness (present study) and species richness (Sax study)
- Diversity results differ
 - oaks have higher diversity than eucs (present study) while Sax detected higher diversity in eucs

No significant difference between oak and eucalyptus for either center or edge (2-way ANOVA, P>.05).

Center vs edge

Although not significant, eucs have higher arthropod abundance than oaks, particularly at edges (2-way ANOVA, P>.05).

Center vs edge

Although not significant, oaks have higher arthropod diversity than eucs in center of woodlot (2-way ANOVA, P>.05).

Summary - Overall habitat comparisons

- Order richness is equal in oak and eucalyptus woodlands.
- Abundance greater in eucs, especially at edges.
- Diversity is higher in oaks, particularly in center.
- More samples might improve accuracy of estimation of diversity and abundance.

Future directions

- Focus on one or a few groups only (e.g. beetles, ants)
 - Orders abundant in all trophic levels
- More samples over several seasons
 - Limited sampling and early in season (need more replicates)
- Winkler trap data was not included in analysis
 - Captures a different suite of arthropods
- Keying to species is important in arthropod diversity studies
 - Morphospecies- surrogate for species

Acknowledgements

- Kerstin Wasson
- Eric Van Dyke
- Joshua Salisbury
- Sondra Schreibman
- Diana Wakimoto

Order richness split by woodlot size

In big woodlots eucs have slightly higher order richness while in small woodlots, oaks have somewhat higher order counts (2-way ANOVA, P>.05).

Total abundance split by woodlot size

Euc groves have slightly higher arthropod abundance, regardless of woodlot size (2-way ANOVA, P>.05)

Diversity (Shannon-Weaver) split by woodlot size

Diversity in big and small euc groves similar, small oak groves have slightly higher diversity than big groves (2-way ANOVA, P>.05)